Cleft extensions in braided categories

被引:14
|
作者
Alvarez, JNA [1 ]
Vilaboa, JMF
机构
[1] Univ Vigo, Dept Matemat, Fac Econ, Vigo 36200, Spain
[2] Univ Santiago, Fac Matemat, Dept Matemat, E-15771 Santiago De Compostela, Spain
关键词
braided category; cleft comodule algebras; crossed products; Hopf algebras;
D O I
10.1080/00927870008827018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Majid in [14] and Bespalov in [2] obtain a braided interpretation of Radford's theorem about Hopf algebras with projection ([19]). In this paper we introduce the notion of H-cleft comodule (module) algebras (coalgebras) for a Hopf algebra Il in a braided monoidal category, and we characterize it as crossed products (coproducts). This allows us give very short proofs for know results in our context, and to introduce others stated for the category of R-modules about of Hopf algebra extensions. In particular we give a proof of the result by Bespalov [2] for a braided monoidal category with co(equalizers).
引用
收藏
页码:3185 / 3196
页数:12
相关论文
共 50 条
  • [1] Two-cocycles and cleft extensions in left braided categories
    Heckenberger, Istvan
    Wolf, Kevin
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (01)
  • [2] Galois extensions of braided tensor categories and braided crossed G-categories
    Müger, M
    JOURNAL OF ALGEBRA, 2004, 277 (01) : 256 - 281
  • [3] Braided Picard groups and graded extensions of braided tensor categories
    Davydov, Alexei
    Nikshych, Dmitri
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (04):
  • [4] Braided Picard groups and graded extensions of braided tensor categories
    Alexei Davydov
    Dmitri Nikshych
    Selecta Mathematica, 2021, 27
  • [5] Cleft extensions of a family of braided Hopf algebras
    Da Rocha, Mauricio
    Guccione, Jorge A.
    Guccione, J.
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (07) : 3166 - 3205
  • [6] Hom-coalgebra cleft extensions and braided tensor Hom-categories of Hom-entwining structures
    Chen Quanguo
    Wang Dingguo
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (01): : 186 - 199
  • [7] Braided Tensor Categories and Extensions of Vertex Operator Algebras
    Yi-Zhi Huang
    Alexander Kirillov
    James Lepowsky
    Communications in Mathematical Physics, 2015, 337 : 1143 - 1159
  • [8] BRAIDED Zq-EXTENSIONS OF POINTED FUSION CATEGORIES
    Dong, Jingcheng
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (03) : 995 - 1001
  • [9] Braided Tensor Categories and Extensions of Vertex Operator Algebras
    Huang, Yi-Zhi
    Kirillov, Alexander, Jr.
    Lepowsky, James
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 337 (03) : 1143 - 1159
  • [10] Braided strict Ann-categories and commutative extensions of rings
    Nguyen Tien Quang
    MATHEMATICAL COMMUNICATIONS, 2014, 19 (01) : 159 - 182