Two-cocycles and cleft extensions in left braided categories

被引:1
|
作者
Heckenberger, Istvan [1 ]
Wolf, Kevin [1 ]
机构
[1] Philipps Univ Marburg, FB Math & Inforrnat, Hans Meerwein Str, D-35032 Marburg, Germany
关键词
Braided monoidal category; braided Hopf algebra; Yetter-Drinfeld module; lifting;
D O I
10.1142/S0219498821400132
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define two-cocycles and cleft extensions in categories that are not necessarily braided, but where specific objects braid from one direction, like for a Hopf algebra H a Yetter-Drinfeld module braids from the left with H-modules. We will generalize classical results to this context and give some application for the categories of Yetter-Drinfeld modules and H-modules. In particular, we will describe liftings of coradically graded Hopf algebras in the category of Yetter-Drinfeld modules with these techniques.
引用
收藏
页数:21
相关论文
共 26 条
  • [1] Cleft extensions in braided categories
    Alvarez, JNA
    Vilaboa, JMF
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (07) : 3185 - 3196
  • [2] Multiplication alteration by two-cocycles for bialgebras with weak antipode
    Alonso Alvarez, Jose Nicanor
    Fernandez Vilaboa, Jose Manuel
    Gonzalez Rodriguez, Ramon
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (03) : 1218 - 1231
  • [3] Galois extensions of braided tensor categories and braided crossed G-categories
    Müger, M
    JOURNAL OF ALGEBRA, 2004, 277 (01) : 256 - 281
  • [4] Braided Picard groups and graded extensions of braided tensor categories
    Davydov, Alexei
    Nikshych, Dmitri
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (04):
  • [5] Braided Picard groups and graded extensions of braided tensor categories
    Alexei Davydov
    Dmitri Nikshych
    Selecta Mathematica, 2021, 27
  • [6] Multiplication Alteration by Two-Cocycles: The Non-associative Version
    Alvarez, J. N. Alonso
    Vilaboa, J. M. Fernandez
    Rodriguez, R. Gonzalez
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (05) : 3557 - 3615
  • [7] Multiplication Alteration by Two-Cocycles: The Non-associative Version
    J. N. Alonso Álvarez
    J. M. Fernández Vilaboa
    R. González Rodríguez
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 3557 - 3615
  • [8] Cleft extensions of a family of braided Hopf algebras
    Da Rocha, Mauricio
    Guccione, Jorge A.
    Guccione, J.
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (07) : 3166 - 3205
  • [9] HOCHSCHILD TWO-COCYCLES AND THE GOOD TRIPLE (As, Hoch, M ag(infinity))
    Leroux, Philippe
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2011, 10 : 76 - 84
  • [10] Hom-coalgebra cleft extensions and braided tensor Hom-categories of Hom-entwining structures
    Chen Quanguo
    Wang Dingguo
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (01): : 186 - 199