Majid in [14] and Bespalov in [2] obtain a braided interpretation of Radford's theorem about Hopf algebras with projection ([19]). In this paper we introduce the notion of H-cleft comodule (module) algebras (coalgebras) for a Hopf algebra Il in a braided monoidal category, and we characterize it as crossed products (coproducts). This allows us give very short proofs for know results in our context, and to introduce others stated for the category of R-modules about of Hopf algebra extensions. In particular we give a proof of the result by Bespalov [2] for a braided monoidal category with co(equalizers).
机构:
Univ Paris, Sorbonne Univ, CNRS, Inst Math Jussieu Paris Rive Gauche, Paris, FranceUniv Paris, Sorbonne Univ, CNRS, Inst Math Jussieu Paris Rive Gauche, Paris, France
Brochier, Adrien
Jordan, David
论文数: 0引用数: 0
h-index: 0
机构:Univ Paris, Sorbonne Univ, CNRS, Inst Math Jussieu Paris Rive Gauche, Paris, France
Jordan, David
Safronov, Pavel
论文数: 0引用数: 0
h-index: 0
机构:Univ Paris, Sorbonne Univ, CNRS, Inst Math Jussieu Paris Rive Gauche, Paris, France
Safronov, Pavel
Snyder, Noah
论文数: 0引用数: 0
h-index: 0
机构:Univ Paris, Sorbonne Univ, CNRS, Inst Math Jussieu Paris Rive Gauche, Paris, France
机构:
Sorbonne Univ, Univ Paris, CNRS, Inst Math Jussieu Paris Rive Gauche, F-75013 Paris, FranceSorbonne Univ, Univ Paris, CNRS, Inst Math Jussieu Paris Rive Gauche, F-75013 Paris, France
Brochier, Adrien
Jordan, David
论文数: 0引用数: 0
h-index: 0
机构:
Univ Edinburgh, Sch Math, Edinburgh, Midlothian, ScotlandSorbonne Univ, Univ Paris, CNRS, Inst Math Jussieu Paris Rive Gauche, F-75013 Paris, France