Cleft extensions in braided categories

被引:14
|
作者
Alvarez, JNA [1 ]
Vilaboa, JMF
机构
[1] Univ Vigo, Dept Matemat, Fac Econ, Vigo 36200, Spain
[2] Univ Santiago, Fac Matemat, Dept Matemat, E-15771 Santiago De Compostela, Spain
关键词
braided category; cleft comodule algebras; crossed products; Hopf algebras;
D O I
10.1080/00927870008827018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Majid in [14] and Bespalov in [2] obtain a braided interpretation of Radford's theorem about Hopf algebras with projection ([19]). In this paper we introduce the notion of H-cleft comodule (module) algebras (coalgebras) for a Hopf algebra Il in a braided monoidal category, and we characterize it as crossed products (coproducts). This allows us give very short proofs for know results in our context, and to introduce others stated for the category of R-modules about of Hopf algebra extensions. In particular we give a proof of the result by Bespalov [2] for a braided monoidal category with co(equalizers).
引用
收藏
页码:3185 / 3196
页数:12
相关论文
共 50 条
  • [21] Invertible braided tensor categories
    Brochier, Adrien
    Jordan, David
    Safronov, Pavel
    Snyder, Noah
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2021, 21 (04): : 2107 - 2140
  • [22] A Rigidity Result for Extensions of Braided Tensor C*-Categories Derived from Compact Matrix Quantum Groups
    Pinzari, Claudia
    Roberts, John E.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 306 (03) : 647 - 662
  • [23] On dualizability of braided tensor categories
    Brochier, Adrien
    Jordan, David
    Snyder, Noah
    COMPOSITIO MATHEMATICA, 2021, 157 (03) : 435 - 483
  • [24] Pointed braided tensor categories
    Bontea, Costel-Gabriel
    Nikshych, Dmitri
    TENSOR CATEGORIES AND HOPF ALGEBRAS, 2019, 728 : 67 - 94
  • [25] Braided and coboundary monoidal categories
    Savage, Alistair
    ALGEBRAS, REPRESENTATIONS AND APPLICATIONS, 2009, 483 : 229 - 251
  • [26] On braided fusion categories I
    Vladimir Drinfeld
    Shlomo Gelaki
    Dmitri Nikshych
    Victor Ostrik
    Selecta Mathematica, 2010, 16 : 1 - 119
  • [28] BRAIDED SKEW MONOIDAL CATEGORIES
    Bourke, John
    Lack, Stephen
    THEORY AND APPLICATIONS OF CATEGORIES, 2020, 35 : 19 - 63
  • [29] On braided fusion categories I
    Drinfeld, Vladimir
    Gelaki, Shlomo
    Nikshych, Dmitri
    Ostrik, Victor
    SELECTA MATHEMATICA-NEW SERIES, 2010, 16 (01): : 1 - 119
  • [30] Centers of braided tensor categories
    Liu, Zhimin
    Zhu, Shenglin
    JOURNAL OF ALGEBRA, 2023, 614 : 115 - 153