Quasi-Monte Carlo methods for Choquet integrals

被引:2
|
作者
Nakano, Yumiharu [1 ]
机构
[1] Tokyo Inst Technol, Meguro Ku, Tokyo, Japan
关键词
Choquet integrals; Quasi-Monte Carlo methods; Risk measures;
D O I
10.1016/j.cam.2015.03.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose numerical integration methods for Choquet integrals where the capacities are given by distortion functions of an underlying probability measure. It relies on the explicit representation of the integrals for step functions and can be seen as quasi-Monte Carlo methods in this framework. We give bounds on the approximation errors in terms of the modulus of continuity of the integrand and the star discrepancy. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:63 / 66
页数:4
相关论文
共 50 条
  • [21] Monte Carlo and quasi-Monte Carlo methods for Dempster's rule of combination
    Salehy, Nima
    Okten, Giray
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2022, 145 : 163 - 186
  • [22] Monte Carlo and Quasi-Monte Carlo for Statistics
    Owen, Art B.
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2008, 2009, : 3 - 18
  • [23] Monte Carlo extension of quasi-Monte Carlo
    Owen, AB
    1998 WINTER SIMULATION CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 1998, : 571 - 577
  • [24] Applications of Monte Carlo quasi-Monte Carlo methods in finance: Option pricing
    Lai, YZ
    Spanier, J
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 1998, 2000, : 284 - 295
  • [25] Enhanced quasi-Monte Carlo methods with dimension reduction
    Imai, J
    Tan, KS
    PROCEEDINGS OF THE 2002 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2002, : 1502 - 1510
  • [26] One more experiment on estimating high-dimensional integrals by quasi-Monte Carlo methods
    Sobol, IM
    Asotsky, DI
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2003, 62 (3-6) : 255 - 263
  • [27] Parallel quasi-Monte Carlo methods on a heterogeneous cluster
    Ökten, G
    Srinivasan, A
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2000, 2002, : 406 - 421
  • [28] ON QUASI-MONTE CARLO METHODS IN WEIGHTED ANOVA SPACES
    Kritzer, P.
    Pillichshammer, F.
    Wasilkowski, G. W.
    MATHEMATICS OF COMPUTATION, 2021, 90 (329) : 1381 - 1406
  • [29] Quasi-Monte Carlo simulation methods for measurement uncertainty
    Li, LM
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 1998, 2000, : 356 - 367
  • [30] Some applications of quasi-monte Carlo methods in statistics
    Fang, KT
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2000, 2002, : 10 - 26