Monte Carlo and quasi-Monte Carlo methods for Dempster's rule of combination

被引:2
|
作者
Salehy, Nima [1 ]
Okten, Giray [2 ]
机构
[1] Louisiana Tech Univ, Dept Math & Stat, Ruston, LA 71272 USA
[2] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
关键词
Dempster-Shafer theory; Theory of evidence; Data fusion; Monte Carlo; Quasi-Monte Carlo; Importance sampling; BELIEF FUNCTIONS;
D O I
10.1016/j.ijar.2022.03.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the challenges in Dempster-Shafer theory is that the data fusion calculation resulting from the popular Dempster's rule of combination is #P-complete. This imposes a computational constraint on the number of belief functions and the number of focal sets that can be combined using Dempster's rule. In this paper we develop Monte Carlo algorithms to approximate Dempster's rule of combination. The algorithms incorporate importance sampling and low-discrepancy sequences. Numerical results suggest the algorithms make it possible to apply Dempster's rule to a much larger number of belief functions and focal sets, and consequently widen the scope of applications of Dempster-Shafer theory. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:163 / 186
页数:24
相关论文
共 50 条
  • [1] Monte Carlo, quasi-Monte Carlo, and randomized quasi-Monte Carlo
    Owen, AB
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 1998, 2000, : 86 - 97
  • [2] Monte Carlo and quasi-Monte Carlo methods - Preface
    Spanier, J
    Pengilly, JH
    MATHEMATICAL AND COMPUTER MODELLING, 1996, 23 (8-9) : R11 - R13
  • [3] MATHEMATICAL BASIS OF MONTE CARLO AND QUASI-MONTE CARLO METHODS
    ZAREMBA, SK
    SIAM REVIEW, 1968, 10 (03) : 303 - &
  • [4] Monte Carlo and quasi-Monte Carlo methods for computer graphics
    Shirley, Peter
    Edwards, Dave
    Boulos, Solomon
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2006, 2008, : 167 - 177
  • [5] Monte Carlo and Quasi-Monte Carlo for Statistics
    Owen, Art B.
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2008, 2009, : 3 - 18
  • [6] Monte Carlo extension of quasi-Monte Carlo
    Owen, AB
    1998 WINTER SIMULATION CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 1998, : 571 - 577
  • [7] Quasi-Monte Carlo methods for simulation
    L'Ecuyer, P
    PROCEEDINGS OF THE 2003 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2003, : 81 - 89
  • [8] Quasi-Monte Carlo methods in finance
    L'Ecuyer, P
    PROCEEDINGS OF THE 2004 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2004, : 1645 - 1655
  • [9] Density Estimation by Monte Carlo and Quasi-Monte Carlo
    L'Ecuyer, Pierre
    Puchhammer, Florian
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2020, 2022, 387 : 3 - 21
  • [10] On Monte Carlo and Quasi-Monte Carlo for Matrix Computations
    Alexandrov, Vassil
    Davila, Diego
    Esquivel-Flores, Oscar
    Karaivanova, Aneta
    Gurov, Todor
    Atanassov, Emanouil
    LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2017, 2018, 10665 : 249 - 257