Monte Carlo and quasi-Monte Carlo methods for Dempster's rule of combination

被引:2
|
作者
Salehy, Nima [1 ]
Okten, Giray [2 ]
机构
[1] Louisiana Tech Univ, Dept Math & Stat, Ruston, LA 71272 USA
[2] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
关键词
Dempster-Shafer theory; Theory of evidence; Data fusion; Monte Carlo; Quasi-Monte Carlo; Importance sampling; BELIEF FUNCTIONS;
D O I
10.1016/j.ijar.2022.03.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the challenges in Dempster-Shafer theory is that the data fusion calculation resulting from the popular Dempster's rule of combination is #P-complete. This imposes a computational constraint on the number of belief functions and the number of focal sets that can be combined using Dempster's rule. In this paper we develop Monte Carlo algorithms to approximate Dempster's rule of combination. The algorithms incorporate importance sampling and low-discrepancy sequences. Numerical results suggest the algorithms make it possible to apply Dempster's rule to a much larger number of belief functions and focal sets, and consequently widen the scope of applications of Dempster-Shafer theory. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:163 / 186
页数:24
相关论文
共 50 条
  • [31] Langevin Quasi-Monte Carlo
    Liu, Sifan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [32] On quasi-Monte Carlo integrations
    Sobol, IM
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (2-5) : 103 - 112
  • [33] Quasi-Monte Carlo sampling to improve the efficiency of Monte Carlo EM
    Jank, W
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 48 (04) : 685 - 701
  • [34] Monte Carlo and Quasi-Monte Carlo Density Estimation via Conditioning
    L'Ecuyer, Pierre
    Puchhammer, Florian
    Ben Abdellah, Amal
    INFORMS JOURNAL ON COMPUTING, 2022, 34 (03) : 1729 - 1748
  • [35] Enhanced quasi-Monte Carlo methods with dimension reduction
    Imai, J
    Tan, KS
    PROCEEDINGS OF THE 2002 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2002, : 1502 - 1510
  • [36] Parallel quasi-Monte Carlo methods on a heterogeneous cluster
    Ökten, G
    Srinivasan, A
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2000, 2002, : 406 - 421
  • [37] ON QUASI-MONTE CARLO METHODS IN WEIGHTED ANOVA SPACES
    Kritzer, P.
    Pillichshammer, F.
    Wasilkowski, G. W.
    MATHEMATICS OF COMPUTATION, 2021, 90 (329) : 1381 - 1406
  • [38] Quasi-Monte Carlo simulation methods for measurement uncertainty
    Li, LM
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 1998, 2000, : 356 - 367
  • [39] Some applications of quasi-monte Carlo methods in statistics
    Fang, KT
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2000, 2002, : 10 - 26
  • [40] Higher Order Quasi-Monte Carlo Methods: A Comparison
    Nuyens, Dirk
    Cools, Ronald
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 553 - 557