Monte Carlo and quasi-Monte Carlo methods for Dempster's rule of combination

被引:2
|
作者
Salehy, Nima [1 ]
Okten, Giray [2 ]
机构
[1] Louisiana Tech Univ, Dept Math & Stat, Ruston, LA 71272 USA
[2] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
关键词
Dempster-Shafer theory; Theory of evidence; Data fusion; Monte Carlo; Quasi-Monte Carlo; Importance sampling; BELIEF FUNCTIONS;
D O I
10.1016/j.ijar.2022.03.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the challenges in Dempster-Shafer theory is that the data fusion calculation resulting from the popular Dempster's rule of combination is #P-complete. This imposes a computational constraint on the number of belief functions and the number of focal sets that can be combined using Dempster's rule. In this paper we develop Monte Carlo algorithms to approximate Dempster's rule of combination. The algorithms incorporate importance sampling and low-discrepancy sequences. Numerical results suggest the algorithms make it possible to apply Dempster's rule to a much larger number of belief functions and focal sets, and consequently widen the scope of applications of Dempster-Shafer theory. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:163 / 186
页数:24
相关论文
共 50 条
  • [41] Distributed Quasi-Monte Carlo methods in a heterogeneous environment
    deDoncker, E.
    Zanny, R.
    Ciobanu, M.
    Guan, Y.
    2000, IEEE, United States
  • [42] Quasi-Monte Carlo methods in robust control design
    Hokayem, PF
    Abdallah, CT
    Dorato, P
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 2435 - 2440
  • [43] Smoothness and dimension reduction in quasi-Monte Carlo methods
    Moskowitz, B
    Caflisch, RE
    MATHEMATICAL AND COMPUTER MODELLING, 1996, 23 (8-9) : 37 - 54
  • [44] Parameterization based on randomized quasi-Monte Carlo methods
    Okten, Giray
    Willyard, Matthew
    PARALLEL COMPUTING, 2010, 36 (07) : 415 - 422
  • [45] Some current issues in quasi-Monte Carlo methods
    Niederreiter, H
    JOURNAL OF COMPLEXITY, 2003, 19 (03) : 428 - 433
  • [46] Smoothness and Dimension Reduction in Quasi-Monte Carlo Methods
    Moskowitz, B.
    Caflisch, R. E.
    Mathematical and Computer Modelling (Oxford), 23 (8-9):
  • [47] Randomized quasi-Monte Carlo methods in pricing securities
    Ökten, G
    Eastman, W
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2004, 28 (12): : 2399 - 2426
  • [48] Variance reduction techniques and quasi-Monte Carlo methods
    Wang, XQ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 132 (02) : 309 - 318
  • [49] Parameterization based on randomized quasi-Monte Carlo methods
    Okten, Giray
    Willyard, Matthew
    2008 IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL & DISTRIBUTED PROCESSING, VOLS 1-8, 2008, : 2885 - 2891
  • [50] A MIXED MONTE CARLO AND QUASI-MONTE CARLO METHOD WITH APPLICATIONS TO MATHEMATICAL FINANCE
    Rosca, Alin, V
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2008, 53 (04): : 57 - 76