Quasi-Monte Carlo methods for Choquet integrals

被引:2
|
作者
Nakano, Yumiharu [1 ]
机构
[1] Tokyo Inst Technol, Meguro Ku, Tokyo, Japan
关键词
Choquet integrals; Quasi-Monte Carlo methods; Risk measures;
D O I
10.1016/j.cam.2015.03.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose numerical integration methods for Choquet integrals where the capacities are given by distortion functions of an underlying probability measure. It relies on the explicit representation of the integrals for step functions and can be seen as quasi-Monte Carlo methods in this framework. We give bounds on the approximation errors in terms of the modulus of continuity of the integrand and the star discrepancy. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:63 / 66
页数:4
相关论文
共 50 条
  • [1] Efficient Quasi-Monte Carlo Methods for Multiple Integrals in Option Pricing
    Todorov, V.
    Dimov, I.
    Dimitrov, Yu.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS'18), 2018, 2025
  • [2] Monte Carlo, quasi-Monte Carlo, and randomized quasi-Monte Carlo
    Owen, AB
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 1998, 2000, : 86 - 97
  • [3] Monte Carlo and quasi-Monte Carlo methods - Preface
    Spanier, J
    Pengilly, JH
    MATHEMATICAL AND COMPUTER MODELLING, 1996, 23 (8-9) : R11 - R13
  • [4] Quasi-Monte Carlo methods for simulation
    L'Ecuyer, P
    PROCEEDINGS OF THE 2003 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2003, : 81 - 89
  • [5] Quasi-Monte Carlo methods in finance
    L'Ecuyer, P
    PROCEEDINGS OF THE 2004 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2004, : 1645 - 1655
  • [6] MATHEMATICAL BASIS OF MONTE CARLO AND QUASI-MONTE CARLO METHODS
    ZAREMBA, SK
    SIAM REVIEW, 1968, 10 (03) : 303 - &
  • [7] Monte Carlo and quasi-Monte Carlo methods for computer graphics
    Shirley, Peter
    Edwards, Dave
    Boulos, Solomon
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2006, 2008, : 167 - 177
  • [8] A COMBINED MONTE CARLO AND QUASI-MONTE CARLO METHOD FOR ESTIMATING MULTIDIMENSIONAL INTEGRALS
    Rosca, Natalia
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2007, 52 (01): : 125 - 140
  • [9] Quasi-Monte Carlo methods with applications in finance
    L'Ecuyer, Pierre
    FINANCE AND STOCHASTICS, 2009, 13 (03) : 307 - 349
  • [10] Quasi-Monte Carlo methods in computer graphics
    Keller, A
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 109 - 112