On the chromatic number of graphs

被引:0
|
作者
Butenko, S [1 ]
Festa, P
Pardalos, PM
机构
[1] Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA
[2] Univ Salerno, Dept Math & Comp Sci, I-84100 Salerno, Italy
[3] Univ Florida, Ctr Appl Optimizat, Dept Ind & Syst Engn, Gainesville, FL USA
关键词
graph coloring problems; combination optimization; integer programming; test problems;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Computing the chromatic number of a graph is an NP-hard problem. For random graphs and some other classes of graphs, estimators of the expected chromatic number have been well studied. In this paper, a new 0-1 integer programming formulation for the graph coloring problem is presented. The proposed new formulation is used to develop a method that generates graphs of known chromatic number by using the KKT optimality conditions of a related continuous nonlinear program.
引用
收藏
页码:51 / 67
页数:17
相关论文
共 50 条
  • [41] CIRCULAR CHROMATIC NUMBER AND MYCIELSKI GRAPHS
    刘红美
    ActaMathematicaScientia, 2006, (02) : 314 - 320
  • [42] Star chromatic number of some graphs
    Akbari, S.
    Chavooshi, M.
    Ghanbari, M.
    Taghian, S.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (01)
  • [43] Graphs that are Critical for the Packing Chromatic Number
    Bresar, Bostjan
    Ferme, Jasmina
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (02) : 569 - 589
  • [44] The Chromatic Number of Joins of Signed Graphs
    Mattern, Amelia R. W.
    GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2723 - 2735
  • [45] Inequalities for the Grundy chromatic number of graphs
    Zaker, Manouchehr
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (18) : 2567 - 2572
  • [46] The chromatic number of random Cayley graphs
    Alon, Noga
    EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (08) : 1232 - 1243
  • [47] The chromatic number of random regular graphs
    Achlioptas, D
    Moore, C
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, PROCEEDINGS, 2004, 3122 : 219 - 228
  • [48] Minors in Graphs with High Chromatic Number
    Boehme, Thomas
    Kostochka, Alexandr
    Thomason, Andrew
    COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (04): : 513 - 518
  • [49] The game chromatic number of random graphs
    Bohman, Tom
    Frieze, Alan
    Sudakov, Benny
    RANDOM STRUCTURES & ALGORITHMS, 2008, 32 (02) : 223 - 235
  • [50] Borel chromatic number of closed graphs
    Lecomte, Dominique
    Zeleny, Miroslav
    FUNDAMENTA MATHEMATICAE, 2016, 234 (02) : 163 - 169