The game chromatic number of random graphs

被引:17
|
作者
Bohman, Tom [1 ]
Frieze, Alan [1 ]
Sudakov, Benny [2 ,3 ]
机构
[1] Carnegie Mellon Univ, Dept Math, Pittsburgh, PA 15213 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[3] Inst Adv Study, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
D O I
10.1002/rsa.20179
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given a graph G and an integer k, two players take turns coloring the vertices of G one by one using k colors so that neighboring vertices get different colors. The first player wins iff at the end of the game all the vertices of G are colored. The game chromatic number chi(g)(G) is the minimum k for which the first player has a winning strategy. In this study, we analyze the asymptotic behavior of this parameter for a random graph G(n,p). We show that with high probability, the game chromatic number of G(n,p) is at least twice its chromatic number but, up to a multiplicative constant, has the same order of magnitude. We also study the game chromatic number of random bipartite graphs. (c) 2007 Wiley Periodicals, Inc.
引用
收藏
页码:223 / 235
页数:13
相关论文
共 50 条
  • [1] The eternal game chromatic number of random graphs
    Dvorak, Vojtech
    Herrman, Rebekah
    van Hintum, Peter
    EUROPEAN JOURNAL OF COMBINATORICS, 2021, 95
  • [2] ON THE GAME CHROMATIC NUMBER OF SPARSE RANDOM GRAPHS
    Frieze, Alan
    Haber, Simcha
    Lavrov, Mikhail
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (02) : 768 - 790
  • [3] The Game Chromatic Number of Dense Random Graphs
    Keusch, Ralph
    Steger, Angelika
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (04):
  • [4] On the chromatic number of random graphs
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    Steger, Angelika
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (05) : 980 - 993
  • [5] THE CHROMATIC NUMBER OF RANDOM GRAPHS
    BOLLOBAS, B
    COMBINATORICA, 1988, 8 (01) : 49 - 55
  • [6] THE CHROMATIC NUMBER OF RANDOM GRAPHS
    LUCZAK, T
    COMBINATORICA, 1991, 11 (01) : 45 - 54
  • [7] On the chromatic number of random graphs
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    Steger, Angelika
    AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2007, 4596 : 777 - +
  • [8] The difference between game chromatic number and chromatic number of graphs
    Matsumoto, Naoki
    INFORMATION PROCESSING LETTERS, 2019, 151
  • [9] A bound for the game chromatic number of graphs
    Dinski, T
    Zhu, XD
    DISCRETE MATHEMATICS, 1999, 196 (1-3) : 109 - 115
  • [10] Game chromatic number of outerplanar graphs
    Guan, DJ
    Zhu, XD
    JOURNAL OF GRAPH THEORY, 1999, 30 (01) : 67 - 70