On the chromatic number of graphs

被引:0
|
作者
Butenko, S [1 ]
Festa, P
Pardalos, PM
机构
[1] Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA
[2] Univ Salerno, Dept Math & Comp Sci, I-84100 Salerno, Italy
[3] Univ Florida, Ctr Appl Optimizat, Dept Ind & Syst Engn, Gainesville, FL USA
关键词
graph coloring problems; combination optimization; integer programming; test problems;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Computing the chromatic number of a graph is an NP-hard problem. For random graphs and some other classes of graphs, estimators of the expected chromatic number have been well studied. In this paper, a new 0-1 integer programming formulation for the graph coloring problem is presented. The proposed new formulation is used to develop a method that generates graphs of known chromatic number by using the KKT optimality conditions of a related continuous nonlinear program.
引用
收藏
页码:51 / 67
页数:17
相关论文
共 50 条
  • [21] CHROMATIC NUMBER OF SKEW GRAPHS
    PAHLINGS, H
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1978, 25 (03) : 303 - 306
  • [22] On Indicated Chromatic Number of Graphs
    Raj, S. Francis
    Raj, R. Pandiya
    Patil, H. P.
    GRAPHS AND COMBINATORICS, 2017, 33 (01) : 203 - 219
  • [23] On the chromatic number of tree graphs
    Estivill-Castro, V
    Noy, M
    Urrutia, J
    DISCRETE MATHEMATICS, 2000, 223 (1-3) : 363 - 366
  • [24] ON THE DYNAMIC CHROMATIC NUMBER OF GRAPHS
    Akbari, S.
    Ghanbari, M.
    Jahanbekam, S.
    COMBINATORICS AND GRAPHS, 2010, 531 : 11 - +
  • [25] On the chromatic number of disk graphs
    Malesinska, E
    Piskorz, S
    Weissenfels, G
    NETWORKS, 1998, 32 (01) : 13 - 22
  • [26] On the injective chromatic number of graphs
    Hahn, G
    Kratochvíl, J
    Sirán, J
    Sotteau, D
    DISCRETE MATHEMATICS, 2002, 256 (1-2) : 179 - 192
  • [27] ON THE CHROMATIC NUMBER OF THE PRODUCT OF GRAPHS
    DUFFUS, D
    SANDS, B
    WOODROW, RE
    JOURNAL OF GRAPH THEORY, 1985, 9 (04) : 487 - 495
  • [28] THE CHROMATIC NUMBER OF RANDOM GRAPHS
    LUCZAK, T
    COMBINATORICA, 1991, 11 (01) : 45 - 54
  • [29] THE CHROMATIC NUMBER OF RANDOM GRAPHS
    BOLLOBAS, B
    COMBINATORICA, 1988, 8 (01) : 49 - 55
  • [30] On incompactness for chromatic number of graphs
    Saharon Shelah
    Acta Mathematica Hungarica, 2013, 139 : 363 - 371