Non-linear process convolutions for multi-output Gaussian processes

被引:0
|
作者
Alvarez, Mauricio A. [1 ]
Ward, Wil O. C. [1 ]
Guarnizo, Cristian [2 ]
机构
[1] Univ Sheffield, Dept Comp Sci, Sheffield, S Yorkshire, England
[2] Univ Tecnol Pereira, Fac Engn, Pereira, Colombia
基金
英国工程与自然科学研究理事会;
关键词
MODELS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper introduces a non-linear version of the process convolution formalism for building covariance functions for multi-output Gaussian processes. The non-linearity is introduced via Volterra series, one series per each output. We provide closed-form expressions for the mean function and the covariance function of the approximated Gaussian process at the output of the Volterra series. The mean function and covariance function for the joint Gaussian process are derived using formulae for the product moments of Gaussian variables. We compare the performance of the non-linear model against the classical process convolution approach in one synthetic dataset and two real datasets.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Large scale multi-output multi-class classification using Gaussian processes
    Chunchao Ma
    Mauricio A. Álvarez
    Machine Learning, 2023, 112 : 1077 - 1106
  • [42] Large scale multi-output multi-class classification using Gaussian processes
    Ma, Chunchao
    Alvarez, Mauricio A.
    MACHINE LEARNING, 2023, 112 (04) : 1077 - 1106
  • [43] Multi-output process identification
    Dayal, BS
    MacGregor, JF
    JOURNAL OF PROCESS CONTROL, 1997, 7 (04) : 269 - 282
  • [44] Dynamic System Identification of Underwater Vehicles Using Multi-Output Gaussian Processes
    Wilmer Ariza Ramirez
    Juš Kocijan
    Zhi Quan Leong
    Hung Duc Nguyen
    Shantha Gamini Jayasinghe
    International Journal of Automation and Computing, 2021, 18 : 681 - 693
  • [45] GAP FILLING OF BIOPHYSICAL PARAMETER TIME SERIES WITH MULTI-OUTPUT GAUSSIAN PROCESSES
    Mateo-Sanchis, Anna
    Munoz-Mari, Jordi
    Campos-Taberner, Manuel
    Garcia-Haro, Javier
    Camps-Valls, Gustau
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4039 - 4042
  • [46] A Discriminative Multi-Output Gaussian Processes Scheme for Brain Electrical Activity Analysis
    Torres-Valencia, Cristian
    Orozco, Alvaro
    Cardenas-Pena, David
    Alvarez-Meza, Andres
    Alvarez, Mauricio
    APPLIED SCIENCES-BASEL, 2020, 10 (19): : 1 - 15
  • [47] Sparse multi-output Gaussian processes for online medical time series prediction
    Li-Fang Cheng
    Bianca Dumitrascu
    Gregory Darnell
    Corey Chivers
    Michael Draugelis
    Kai Li
    Barbara E Engelhardt
    BMC Medical Informatics and Decision Making, 20
  • [48] Adaptive sampling of homogenized cross-sections with multi-output gaussian processes
    Truffinet, Olivier
    Ammar, Karim
    Argaud, Jean-Philippe
    Castaing, Nicolas Gerard
    Bouriquet, Bertrand
    JOINT INTERNATIONAL CONFERENCE ON SUPERCOMPUTING IN NUCLEAR APPLICATIONS + MONTE CARLO, SNA + MC 2024, 2024, 302
  • [49] Tracking Dependent Extended Targets Using Multi-Output Spatiotemporal Gaussian Processes
    Akbari, Behzad
    Zhu, Haibin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 18301 - 18314
  • [50] Adaptive state estimation of multi-input and multi-output non-linear systems with general uncertainties both in the state and output equations
    Yang, Qiang
    Liu, Yusheng
    IET CONTROL THEORY AND APPLICATIONS, 2016, 10 (03): : 354 - 362