Non-linear process convolutions for multi-output Gaussian processes

被引:0
|
作者
Alvarez, Mauricio A. [1 ]
Ward, Wil O. C. [1 ]
Guarnizo, Cristian [2 ]
机构
[1] Univ Sheffield, Dept Comp Sci, Sheffield, S Yorkshire, England
[2] Univ Tecnol Pereira, Fac Engn, Pereira, Colombia
基金
英国工程与自然科学研究理事会;
关键词
MODELS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper introduces a non-linear version of the process convolution formalism for building covariance functions for multi-output Gaussian processes. The non-linearity is introduced via Volterra series, one series per each output. We provide closed-form expressions for the mean function and the covariance function of the approximated Gaussian process at the output of the Volterra series. The mean function and covariance function for the joint Gaussian process are derived using formulae for the product moments of Gaussian variables. We compare the performance of the non-linear model against the classical process convolution approach in one synthetic dataset and two real datasets.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Multi-output Gaussian processes for enhancing resolution of diffusion tensor fields
    Vargas Cardona, Hernan Dario
    Orozco, Alvaro A.
    Alvarez, Mauricio A.
    2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 1111 - 1114
  • [32] Convolved Multi-output Gaussian Processes for Semi-Supervised Learning
    Vargas Cardona, Hernan Dario
    Alvarez, Mauricio A.
    Orozco, Alvaro A.
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2015, PT I, 2015, 9279 : 109 - 118
  • [33] On convergence of non-linear extended state observer for multi-input multi-output systems with uncertainty
    Guo, B. -Z.
    Zhao, Z. -L.
    IET CONTROL THEORY AND APPLICATIONS, 2012, 6 (15): : 2375 - 2386
  • [34] Nonstationary multi-output Gaussian processes via harmonizable spectral mixtures
    Altamirano, Matias
    Tobar, Felipe
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [35] Near-Optimal Active Learning of Multi-Output Gaussian Processes
    Zhang, Yehong
    Trong Nghia Hoang
    Low, Kian Hsiang
    Kankanhalli, Mohan
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 2351 - 2357
  • [36] LINEAR AND NON-LINEAR FILTERS FOR LINEAR, BUT NOT GAUSSIAN-PROCESSES
    RAO, TS
    YAR, M
    INTERNATIONAL JOURNAL OF CONTROL, 1984, 39 (01) : 235 - 246
  • [37] Enhanced Network Bandwidth Prediction with Multi-Output Gaussian Process Regression
    Chen, Shude
    Nakachi, Takayuki
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2025, 16 (02) : 73 - 83
  • [38] Respiratory motion prediction using multi-output Gaussian process regression
    Omotayo, Azeez
    McCurdy, Boyd
    Venkataraman, Sankar
    MEDICAL PHYSICS, 2017, 44 (08) : 4385 - 4385
  • [39] Fast Airfoil Design Based on Multi-output Gaussian Process Regression
    Yan Guoqi
    Liu Xuejun
    Lu Hongqiang
    DISCOVERY, INNOVATION AND COMMUNICATION - 5TH CSAA SCIENCE AND TECHNIQUE YOUTH FORUM, 2012, : 147 - 152
  • [40] Multi-output local Gaussian process regression: Applications to uncertainty quantification
    Bilionis, Ilias
    Zabaras, Nicholas
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (17) : 5718 - 5746