Non-linear process convolutions for multi-output Gaussian processes

被引:0
|
作者
Alvarez, Mauricio A. [1 ]
Ward, Wil O. C. [1 ]
Guarnizo, Cristian [2 ]
机构
[1] Univ Sheffield, Dept Comp Sci, Sheffield, S Yorkshire, England
[2] Univ Tecnol Pereira, Fac Engn, Pereira, Colombia
基金
英国工程与自然科学研究理事会;
关键词
MODELS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper introduces a non-linear version of the process convolution formalism for building covariance functions for multi-output Gaussian processes. The non-linearity is introduced via Volterra series, one series per each output. We provide closed-form expressions for the mean function and the covariance function of the approximated Gaussian process at the output of the Volterra series. The mean function and covariance function for the joint Gaussian process are derived using formulae for the product moments of Gaussian variables. We compare the performance of the non-linear model against the classical process convolution approach in one synthetic dataset and two real datasets.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Online Sparse Multi-Output Gaussian Process Regression and Learning
    Yang, Le
    Wang, Ke
    Mihaylova, Lyudmila
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2019, 5 (02): : 258 - 272
  • [22] Multi-output Gaussian Process Regression Model with Combined Kernel Function for Polyester Esterification Processes
    王恒骞
    耿君先
    陈磊
    JournalofDonghuaUniversity(EnglishEdition), 2023, 40 (01) : 27 - 33
  • [23] On Modeling of Repairable Systems with Multi-Output Gaussian Convolution Process
    Cui, Di
    Xie, Min
    Sun, Qiuzhuang
    2022 4TH INTERNATIONAL CONFERENCE ON SYSTEM RELIABILITY AND SAFETY ENGINEERING, SRSE, 2022, : 75 - 80
  • [24] Variational Dependent Multi-output Gaussian Process Dynamical Systems
    Zhao, Jing
    Sun, Shiliang
    DISCOVERY SCIENCE, DS 2014, 2014, 8777 : 350 - 361
  • [25] Constrained Multi-Output Gaussian Process Regression for Data Reconciliation
    Horak, W.
    Louw, T. M.
    Bradshaw, S. M.
    IFAC PAPERSONLINE, 2024, 58 (04): : 324 - 329
  • [26] Battery Capacity Trajectory Prediction with Multi-output Gaussian Process
    Li, Jinwen
    Deng, Zhongwei
    Hu, Xiaosong
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1916 - 1922
  • [27] Approximate Inference in Related Multi-output Gaussian Process Regression
    Chiplunkar, Ankit
    Rachelson, Emmanuel
    Colombo, Michele
    Morlier, Joseph
    PATTERN RECOGNITION APPLICATIONS AND METHODS, ICPRAM 2016, 2017, 10163 : 88 - 103
  • [28] Variational Dependent Multi-output Gaussian Process Dynamical Systems
    Zhao, Jing
    Sun, Shiliang
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17 : 1 - 36
  • [29] Variational dependent multi-output Gaussian process dynamical systems
    Zhao, Jing
    Sun, Shiliang
    Journal of Machine Learning Research, 2021, 17 (121) : 1 - 36
  • [30] Non-parametric dynamic system identification of ships using multi-output Gaussian Processes
    Ramire, Wilmer Ariza
    Leong, Zhi Quan
    Hung Nguyen
    Jayasinghe, Shantha Gamini
    OCEAN ENGINEERING, 2018, 166 : 26 - 36