On the norm and covering radius of the first-order Reed-Muller codes

被引:28
|
作者
Hou, XD
机构
[1] Dept. of Mathematics and Statistics, Wright State University, Dayton
关键词
covering radius; norm; Reed-Muller codes;
D O I
10.1109/18.568715
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let rho(1, m) and N(1, m) be the covering radius and norm of the first-order Reed-Muller code R(1, m), respectively. It is known that rho(1, 2k + 1) less than or equal to [2(2k) - 2((2k - 1)/2)] and N(1, 2k + 1) less than or equal to 2[2(2k) - 2((2k - 1)/2)] (k > 0). We prove that rho(1, 2k + 1) less than or equal to 2[2(2k - 1) - 2((2k - 3)/2)] and N(1, 2k + 1) less than or equal to 4[2(2k - 1) - 2((2k - 3)/2)] ( k > 0). We also discuss the connections of the two new bounds with other coding theoretic problems.
引用
收藏
页码:1025 / 1027
页数:3
相关论文
共 50 条
  • [41] On those Boolean functions that are coset leaders of first order Reed-Muller codes
    Carlet, Claude
    Feukoua, Serge
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2024, 92 (01) : 7 - 27
  • [42] Multiple-rate codes from block Markov superposition transmission of first-order Reed-Muller and extended Hamming codes
    Tong, Sheng
    Liu, Bo
    Guo, Qinghua
    Tong, Jun
    Xi, Jiangtao
    ELECTRONICS LETTERS, 2016, 52 (18) : 1531 - 1532
  • [43] Fast decoding of non-binary first order Reed-Muller codes
    Ashikhmin, AE
    Litsyn, SN
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1996, 7 (04) : 299 - 308
  • [44] On those Boolean functions that are coset leaders of first order Reed-Muller codes
    Claude Carlet
    Serge Feukoua
    Annals of Mathematics and Artificial Intelligence, 2024, 92 : 7 - 27
  • [45] Testing Reed-Muller codes
    Alon, N
    Kaufman, T
    Krivelevich, M
    Litsyn, S
    Ron, D
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (11) : 4032 - 4039
  • [46] PROJECTIVE REED-MULLER CODES
    LACHAUD, G
    LECTURE NOTES IN COMPUTER SCIENCE, 1988, 311 : 125 - 129
  • [47] On some cosets of the first-order Reed-Muller code with high minimum weight
    Fontaine, C
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) : 1237 - 1243
  • [48] Quaternary Reed-Muller codes
    Borges, J
    Fernández, C
    Phelps, KT
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (07) : 2686 - 2691
  • [49] Reed-Muller Codes Polarize
    Abbe, Emmanuel
    Ye, Min
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (12) : 7311 - 7332
  • [50] ON A CONJECTURE ON REED-MULLER CODES
    WASAN, SK
    GAMES, RA
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1984, 56 (02) : 269 - 271