On the norm and covering radius of the first-order Reed-Muller codes

被引:28
|
作者
Hou, XD
机构
[1] Dept. of Mathematics and Statistics, Wright State University, Dayton
关键词
covering radius; norm; Reed-Muller codes;
D O I
10.1109/18.568715
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let rho(1, m) and N(1, m) be the covering radius and norm of the first-order Reed-Muller code R(1, m), respectively. It is known that rho(1, 2k + 1) less than or equal to [2(2k) - 2((2k - 1)/2)] and N(1, 2k + 1) less than or equal to 2[2(2k) - 2((2k - 1)/2)] (k > 0). We prove that rho(1, 2k + 1) less than or equal to 2[2(2k - 1) - 2((2k - 3)/2)] and N(1, 2k + 1) less than or equal to 4[2(2k - 1) - 2((2k - 3)/2)] ( k > 0). We also discuss the connections of the two new bounds with other coding theoretic problems.
引用
收藏
页码:1025 / 1027
页数:3
相关论文
共 50 条
  • [21] Jacobi polynomials and harmonic weight enumerators of the first-order Reed-Muller codes and the extended Hamming codes
    Miezaki, Tsuyoshi
    Munemasa, Akihiro
    DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (04) : 1041 - 1049
  • [22] Further results on the covering radii of the Reed-Muller codes
    Hou, Xiang-dong
    Designs, Codes, and Cryptography, 1993, 3 (02)
  • [23] SOME RESULTS ON THE COVERING RADII OF REED-MULLER CODES
    HOU, XD
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (02) : 366 - 378
  • [24] Soft-decision list decoding with linear complexity for the first-order Reed-Muller codes
    Dumer, Ilya
    Kabatiansky, Grigory
    Tavernier, Cedric
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 1346 - +
  • [25] COSET LEADERS OF THE FIRST-ORDER REED-MULLER CODES IN FOUR NEW CLASSES OF BOOLEAN FUNCTIONS
    Carlet, Claude
    Feukoua, Serge
    Salagean, Ana
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024,
  • [26] On the covering radius of the third order Reed-Muller code RM (3,7)
    Wang, Qichun
    Tan, Chik How
    Prabowo, Theo Fanuela
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (01) : 151 - 159
  • [27] New bounds on the covering radius of the second order Reed-Muller code of length 128
    Wang, Qichun
    Stanica, Pantelimon
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (02): : 269 - 277
  • [28] Reed-Muller Codes
    Abbe, Emmanuel
    Sberlo, Ori
    Shpilka, Amir
    Ye, Min
    FOUNDATIONS AND TRENDS IN COMMUNICATIONS AND INFORMATION THEORY, 2023, 20 (1-2): : 1 - 156
  • [29] New bounds on the covering radius of the second order Reed-Muller code of length 128
    Qichun Wang
    Pantelimon Stănică
    Cryptography and Communications, 2019, 11 : 269 - 277
  • [30] ON THE REED-MULLER CODES
    ASSMUS, EF
    DISCRETE MATHEMATICS, 1992, 106 : 25 - 33