On the norm and covering radius of the first-order Reed-Muller codes

被引:28
|
作者
Hou, XD
机构
[1] Dept. of Mathematics and Statistics, Wright State University, Dayton
关键词
covering radius; norm; Reed-Muller codes;
D O I
10.1109/18.568715
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let rho(1, m) and N(1, m) be the covering radius and norm of the first-order Reed-Muller code R(1, m), respectively. It is known that rho(1, 2k + 1) less than or equal to [2(2k) - 2((2k - 1)/2)] and N(1, 2k + 1) less than or equal to 2[2(2k) - 2((2k - 1)/2)] (k > 0). We prove that rho(1, 2k + 1) less than or equal to 2[2(2k - 1) - 2((2k - 3)/2)] and N(1, 2k + 1) less than or equal to 4[2(2k - 1) - 2((2k - 3)/2)] ( k > 0). We also discuss the connections of the two new bounds with other coding theoretic problems.
引用
收藏
页码:1025 / 1027
页数:3
相关论文
共 50 条
  • [31] Simple MAP decoding of first order Reed-Muller and hamming codes
    Ashikhmin, A
    Litsyn, S
    2003 IEEE INFORMATION THEORY WORKSHOP, PROCEEDINGS, 2003, : 18 - 21
  • [32] Simple MAP decoding of first order Reed-Muller and hamming codes
    Ashikhmin, A
    Litsyn, S
    22ND CONVENTION OF ELECTRICAL AND ELECTRONICS ENGINEERS IN ISRAEL, PROCEEDINGS, 2002, : 141 - 143
  • [33] Correctable errors of weight half the minimum distance plus one for the first-order reed-muller codes
    Yasunaga, Kenji
    Fujiwara, Toru
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 2007, 4851 : 110 - 119
  • [34] A noise-adaptive algorithm for First-Order Reed-Muller decoding
    Feldman, J
    Abou-Faycal, I
    Frigo, M
    IEEE 56TH VEHICULAR TECHNOLOGY CONFERENCE, VTC FALL 2002, VOLS 1-4, PROCEEDINGS, 2002, : 758 - 762
  • [35] On cosets of the generalized first-order Reed-Muller code with low PMEPR
    Schmidt, Kai-Uwe
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (07) : 3220 - 3232
  • [36] On closets of the generalized first-order Reed-Muller code with low PMEPR
    Schmidt, Kai-Uwe
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 1723 - 1727
  • [37] Fast decoding of the p-ary first-order Reed-Muller codes based on Jacket transform
    Lee, Moon Ho
    Borissov, Yuri L.
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2008, E91A (03) : 901 - 904
  • [38] Improving the upper bounds on the covering radii of Reed-Muller codes
    Carlet, C
    Mesnager, S
    2005 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), VOLS 1 AND 2, 2005, : 795 - 799
  • [39] On the covering radius of second order binary Reed-Muller code in the set of resilient Boolean functions
    Borissov, Y
    Braeken, A
    Nikova, S
    Preneel, B
    CRYPTOGRAPHY AND CODING, PROCEEDINGS, 2003, 2898 : 82 - 92
  • [40] THE COVERING RADIUS OF THE (128,8) REED-MULLER CODE IS 56
    MYKKELTVEIT, JJ
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1980, 26 (03) : 359 - 362