On the norm and covering radius of the first-order Reed-Muller codes

被引:28
|
作者
Hou, XD
机构
[1] Dept. of Mathematics and Statistics, Wright State University, Dayton
关键词
covering radius; norm; Reed-Muller codes;
D O I
10.1109/18.568715
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let rho(1, m) and N(1, m) be the covering radius and norm of the first-order Reed-Muller code R(1, m), respectively. It is known that rho(1, 2k + 1) less than or equal to [2(2k) - 2((2k - 1)/2)] and N(1, 2k + 1) less than or equal to 2[2(2k) - 2((2k - 1)/2)] (k > 0). We prove that rho(1, 2k + 1) less than or equal to 2[2(2k - 1) - 2((2k - 3)/2)] and N(1, 2k + 1) less than or equal to 4[2(2k - 1) - 2((2k - 3)/2)] ( k > 0). We also discuss the connections of the two new bounds with other coding theoretic problems.
引用
收藏
页码:1025 / 1027
页数:3
相关论文
共 50 条