A modular integer GCD algorithm

被引:0
|
作者
Weber, K [1 ]
Trevisan, V
Martins, LF
机构
[1] Mt Union Coll, Dept Comp Sci & Informat Syst, Alliance, OH 44601 USA
[2] Univ Fed Rio Grande do Sul, Inst Matemat, BR-91509900 Porto Alegre, RS, Brazil
[3] Cleveland State Univ, Dept Math, Cleveland, OH 44115 USA
关键词
integer GCD; modular representation; residue arithmetic; parallel algorithm;
D O I
10.1016/j.jalgor.2004.06.006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper describes the first algorithm to compute the greatest common divisor (GCD) of two n-bit integers using a modular representation for intermediate values U, V and also for the result. It is based on a reduction step, similar to one used in the accelerated algorithm [T. Jebelean, A generalization of the binary GCD algorithm, in: ISSAC '93: International Symposium on Symbolic and Algebraic Computation, Kiev, Ukraine, 1993, pp. 111-116; K. Weber, The accelerated integer GCD algorithm, ACM Trans. Math. Softw. 21 (1995) 111-122] when U and V are close to the same size, that replaces U by (U - bV)/p, where p is one of the prime moduli and b is the unique integer in the interval (-p/2, p/2) such that b equivalent to UV-1 (mod p). When the algorithm is executed on a bit common CRCW PRAM with O(n log n log log log n) processors, it takes O(n) time in the worst case. A heuristic model of the average case yields O(n/ log n) time on the same number of processors. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:152 / 167
页数:16
相关论文
共 50 条
  • [41] On Acceleration of the k-ary GCD Algorithm
    Amer, I
    Ishmukhametov, S. T.
    UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA FIZIKO-MATEMATICHESKIE NAUKI, 2019, 161 (01): : 110 - 118
  • [42] A modular mixed-integer non-linear programming algorithm for synthesis of chemical processes
    Li, HH
    Qian, Y
    Zheng, SQ
    Cheng, HN
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2004, 82 (05): : 1029 - 1036
  • [43] A Reduction of Integer Factorization to Modular Tetration
    Hittmeir, Markus
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2020, 31 (04) : 461 - 481
  • [44] Distribution of consecutive modular roots of an integer
    Bourgain, Jean
    Shparlinski, Igor E.
    ACTA ARITHMETICA, 2008, 134 (01) : 83 - 91
  • [45] Integer factoring and modular square roots
    Jerabek, Emil
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2016, 82 (02) : 380 - 394
  • [46] Existence of a limiting distribution for the binary GCD algorithm
    Maze, Gerard
    JOURNAL OF DISCRETE ALGORITHMS, 2007, 5 (01) : 176 - 186
  • [47] An alternating projection algorithm for the "approximate" GCD calculation
    Limantseva, O.
    Halikias, G.
    Karcanias, N.
    IFAC PAPERSONLINE, 2020, 53 (02): : 5837 - 5842
  • [48] Short-Iteration Constant-Time GCD and Modular Inversion
    Jin, Yaoan
    Miyaji, Atsuko
    SMART CARD RESEARCH AND ADVANCED APPLICATIONS, CARDIS 2022, 2023, 13820 : 82 - 99
  • [49] An Efficient Algorithm for Computing Parametric Multivariate Polynomial GCD
    Kapur, Deepak
    Lu, Dong
    Monagan, Michael
    Sun, Yao
    Wang, Dingkang
    ISSAC'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2018, : 239 - 246
  • [50] Toward the best algorithm for approximate GCD of univariate polynomials
    Nagasaka, Kosaku
    JOURNAL OF SYMBOLIC COMPUTATION, 2021, 105 : 4 - 27