A modular integer GCD algorithm

被引:0
|
作者
Weber, K [1 ]
Trevisan, V
Martins, LF
机构
[1] Mt Union Coll, Dept Comp Sci & Informat Syst, Alliance, OH 44601 USA
[2] Univ Fed Rio Grande do Sul, Inst Matemat, BR-91509900 Porto Alegre, RS, Brazil
[3] Cleveland State Univ, Dept Math, Cleveland, OH 44115 USA
关键词
integer GCD; modular representation; residue arithmetic; parallel algorithm;
D O I
10.1016/j.jalgor.2004.06.006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper describes the first algorithm to compute the greatest common divisor (GCD) of two n-bit integers using a modular representation for intermediate values U, V and also for the result. It is based on a reduction step, similar to one used in the accelerated algorithm [T. Jebelean, A generalization of the binary GCD algorithm, in: ISSAC '93: International Symposium on Symbolic and Algebraic Computation, Kiev, Ukraine, 1993, pp. 111-116; K. Weber, The accelerated integer GCD algorithm, ACM Trans. Math. Softw. 21 (1995) 111-122] when U and V are close to the same size, that replaces U by (U - bV)/p, where p is one of the prime moduli and b is the unique integer in the interval (-p/2, p/2) such that b equivalent to UV-1 (mod p). When the algorithm is executed on a bit common CRCW PRAM with O(n log n log log log n) processors, it takes O(n) time in the worst case. A heuristic model of the average case yields O(n/ log n) time on the same number of processors. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:152 / 167
页数:16
相关论文
共 50 条
  • [21] A parallel extended GCD algorithm
    Sedjelmaci, Sidi Mohamed
    JOURNAL OF DISCRETE ALGORITHMS, 2008, 6 (03) : 526 - 538
  • [22] Modular Integer Arithmetic
    Schwarzweller, Christoph
    FORMALIZED MATHEMATICS, 2008, 16 (03): : 247 - 252
  • [23] Analysis of the Brun Gcd Algorithm
    Berthe, Valerie
    Lhote, Loick
    Vallee, Brigitte
    PROCEEDINGS OF THE 2016 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC 2016), 2016, : 87 - 94
  • [24] Planar integer linear programming is NC equivalent to Euclidean GCD
    Shallcross, DF
    Pan, VY
    Lin-Kriz, Y
    SIAM JOURNAL ON COMPUTING, 1998, 27 (04) : 960 - 971
  • [25] EXTENDING THE BINARY GCD ALGORITHM
    NORTON, GH
    LECTURE NOTES IN COMPUTER SCIENCE, 1986, 229 : 363 - 372
  • [26] Multiple precision integer GCD performance analysis on parallel architectures
    Tembhurne, Jitendra V.
    Sathe, S.R.
    IAENG International Journal of Computer Science, 2015, 42 (04) : 296 - 304
  • [27] GCD-free algorithms for computing modular inverses
    Joye, M
    Paillier, P
    CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS CHES 2003, PROCEEDINGS, 2003, 2779 : 243 - 253
  • [28] A SHIFT-REMAINDER GCD ALGORITHM
    NORTON, G
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 356 : 351 - 356
  • [29] Approximate GCD by relaxed NewtonSLRA algorithm
    Nagasaka, Kosaku
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2021, 55 (03): : 97 - 101
  • [30] An analysis of the generalized binary GCD algorithm
    Sorenson, JP
    HIGH PRIMES AND MISDEMEANOURS: LECTURES IN HONOUR OF THE 60TH BIRTHDAY OF HUGH COWIE WILLIAMS, 2004, 41 : 327 - 340