A modular integer GCD algorithm

被引:0
|
作者
Weber, K [1 ]
Trevisan, V
Martins, LF
机构
[1] Mt Union Coll, Dept Comp Sci & Informat Syst, Alliance, OH 44601 USA
[2] Univ Fed Rio Grande do Sul, Inst Matemat, BR-91509900 Porto Alegre, RS, Brazil
[3] Cleveland State Univ, Dept Math, Cleveland, OH 44115 USA
关键词
integer GCD; modular representation; residue arithmetic; parallel algorithm;
D O I
10.1016/j.jalgor.2004.06.006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper describes the first algorithm to compute the greatest common divisor (GCD) of two n-bit integers using a modular representation for intermediate values U, V and also for the result. It is based on a reduction step, similar to one used in the accelerated algorithm [T. Jebelean, A generalization of the binary GCD algorithm, in: ISSAC '93: International Symposium on Symbolic and Algebraic Computation, Kiev, Ukraine, 1993, pp. 111-116; K. Weber, The accelerated integer GCD algorithm, ACM Trans. Math. Softw. 21 (1995) 111-122] when U and V are close to the same size, that replaces U by (U - bV)/p, where p is one of the prime moduli and b is the unique integer in the interval (-p/2, p/2) such that b equivalent to UV-1 (mod p). When the algorithm is executed on a bit common CRCW PRAM with O(n log n log log log n) processors, it takes O(n) time in the worst case. A heuristic model of the average case yields O(n/ log n) time on the same number of processors. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:152 / 167
页数:16
相关论文
共 50 条
  • [31] INTEGER APPROACH TO MODULAR DESIGN
    SHAFTEL, T
    OPERATIONS RESEARCH, 1971, 19 (01) : 130 - &
  • [32] A SYSTOLIC ALGORITHM FOR EXTENDED GCD COMPUTATION
    BOJANCZYK, AW
    BRENT, RP
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1987, 14 (04) : 233 - 238
  • [33] Fast constant-time gcd computation and modular inversion
    Bernstein D.J.
    Yang B.-Y.
    IACR Transactions on Cryptographic Hardware and Embedded Systems, 2019, 2019 (03): : 340 - 398
  • [34] An approximating k-ary GCD algorithm
    Ishmukhametov, Sh.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2016, 37 (06) : 723 - 729
  • [35] A fast parallel sparse polynomial GCD algorithm
    Hu, Jiaxiong
    Monagen, Michael
    JOURNAL OF SYMBOLIC COMPUTATION, 2021, 105 : 28 - 63
  • [36] (1+i)-ary GCD computation in Z[i] as an analogue to the binary GCD algorithm
    Weilert, A
    JOURNAL OF SYMBOLIC COMPUTATION, 2000, 30 (05) : 605 - 617
  • [37] A novel fast hybrid GCD computation algorithm
    Mohamed, Faraoun Kamel
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2014, 5 (01) : 37 - 47
  • [38] A Fast Parallel Sparse Polynomial GCD Algorithm
    Hu, Jiaxiong
    Monagan, Michael
    PROCEEDINGS OF THE 2016 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC 2016), 2016, : 271 - 278
  • [39] INTEGER PROGRAMMING VIA MODULAR REPRESENTATIONS
    WILSON, R
    MANAGEMENT SCIENCE SERIES A-THEORY, 1970, 16 (05): : 289 - 294
  • [40] Probabilistic analyses of the plain multiple gcd algorithm
    Berthe, Valerie
    Lhote, Loick
    Vallee, Brigitte
    JOURNAL OF SYMBOLIC COMPUTATION, 2016, 74 : 425 - 474