Asynchronism and nonequilibrium phase transitions in (1+1)-dimensional quantum cellular automata

被引:5
|
作者
Gillman, Edward [1 ,2 ]
Carollo, Federico [3 ]
Lesanovsky, Igor [1 ,2 ,3 ]
机构
[1] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
[2] Univ Nottingham, Ctr Math & Theoret Phys Quantum Nonequilibrium Sys, Nottingham NG7 2RD, England
[3] Univ Tubingen, Inst Theoret Phys, Morgenstelle 14, D-72076 Tubingen, Germany
基金
英国工程与自然科学研究理事会;
关键词
Backpropagation - Cellular automata - Quantum optics;
D O I
10.1103/PhysRevE.106.L032103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Probabilistic cellular automata provide a simple framework for exploring classical nonequilibrium processes. Recently, quantum cellular automata have been proposed that rely on the propagation of a one-dimensional quantum state along a fictitious discrete time dimension via the sequential application of quantum gates. The resulting (1 + 1)-dimensional space-time structure makes these automata special cases of recurrent quantum neural networks which can implement broad classes of classical nonequilibrium processes. Here, we present a general prescription by which these models can be extended into genuinely quantum nonequilibrium models via the systematic inclusion of asynchronism. This is illustrated for the classical contact process, where the resulting model is closely linked to the quantum contact process (QCP), developed in the framework of open quantum systems. Studying the mean-field behavior of the model, we find evidence of an "asynchronism transition, " i.e., a sudden qualitative change in the phase transition behavior once a certain degree of asynchronicity is surpassed, a phenomenon we link to observations in the QCP.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Quantum cosmology in (1+1)-dimensional Horava-Lifshitz theory of gravity
    Pitelli, J. P. M.
    PHYSICAL REVIEW D, 2016, 93 (10)
  • [42] Complexity and scaling in quantum quench in 1+1 dimensional fermionic field theories
    Liu, Sinong
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (07)
  • [43] Anomalous diffusion and factor ordering in (1+1)-dimensional Lorentzian quantum gravity
    Sanderson, E.
    Maitra, R. L.
    Liberatore, A. J.
    NUCLEAR PHYSICS B, 2025, 1010
  • [44] Nonequilibrium quantum dynamics of second order phase transitions
    Kim, SP
    Lee, CH
    PHYSICAL REVIEW D, 2000, 62 (12) : 1 - 28
  • [45] Revealing the nature of nonequilibrium phase transitions with quantum trajectories
    Link, Valentin
    Luoma, Kimmo
    Strunz, Walter T.
    PHYSICAL REVIEW A, 2019, 99 (06)
  • [46] Quantum-corrected Cardy entropy for generic (1+1)-dimensional gravity
    Medved, AJM
    CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (09) : 2503 - 2513
  • [47] Analog quantum simulation of (1+1)-dimensional lattice QED with trapped ions
    Yang, Dayou
    Giri, Gouri Shankar
    Johanning, Michael
    Wunderlich, Christof
    Zoller, Peter
    Hauke, Philipp
    PHYSICAL REVIEW A, 2016, 94 (05)
  • [48] Phase transitions in one-dimensional nonequilibrium systems
    Evans, MR
    BRAZILIAN JOURNAL OF PHYSICS, 2000, 30 (01) : 42 - 57
  • [49] CELLULAR-AUTOMATA IN 1+1, 2+2 AND 3+1 DIMENSIONS, CONSTANTS OF MOTION AND COHERENT STRUCTURES
    BRUSCHI, M
    SANTINI, PM
    PHYSICA D, 1994, 70 (1-2): : 185 - 209
  • [50] (1+1)-dimensional separation of variables
    Pucacco, Giuseppe
    Rosquist, Kjell
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (11)