Asynchronism and nonequilibrium phase transitions in (1+1)-dimensional quantum cellular automata

被引:5
|
作者
Gillman, Edward [1 ,2 ]
Carollo, Federico [3 ]
Lesanovsky, Igor [1 ,2 ,3 ]
机构
[1] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
[2] Univ Nottingham, Ctr Math & Theoret Phys Quantum Nonequilibrium Sys, Nottingham NG7 2RD, England
[3] Univ Tubingen, Inst Theoret Phys, Morgenstelle 14, D-72076 Tubingen, Germany
基金
英国工程与自然科学研究理事会;
关键词
Backpropagation - Cellular automata - Quantum optics;
D O I
10.1103/PhysRevE.106.L032103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Probabilistic cellular automata provide a simple framework for exploring classical nonequilibrium processes. Recently, quantum cellular automata have been proposed that rely on the propagation of a one-dimensional quantum state along a fictitious discrete time dimension via the sequential application of quantum gates. The resulting (1 + 1)-dimensional space-time structure makes these automata special cases of recurrent quantum neural networks which can implement broad classes of classical nonequilibrium processes. Here, we present a general prescription by which these models can be extended into genuinely quantum nonequilibrium models via the systematic inclusion of asynchronism. This is illustrated for the classical contact process, where the resulting model is closely linked to the quantum contact process (QCP), developed in the framework of open quantum systems. Studying the mean-field behavior of the model, we find evidence of an "asynchronism transition, " i.e., a sudden qualitative change in the phase transition behavior once a certain degree of asynchronicity is surpassed, a phenomenon we link to observations in the QCP.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Dynamics of the phase transitions in the system of nonequilibrium charge carriers in quantum-dimensional Si1 − xGex/Si structures
    V. S. Bagaev
    V. S. Krivobok
    S. N. Nikolaev
    E. E. Onishchenko
    A. A. Pruchkina
    D. F. Aminev
    M. L. Skorikov
    D. N. Lobanov
    A. V. Novikov
    Journal of Experimental and Theoretical Physics, 2013, 117 : 912 - 925
  • [22] Scaling of 1/f noise in nonequilibrium phase transitions
    V. P. Koverda
    V. N. Skokov
    Technical Physics, 2004, 49 : 1104 - 1109
  • [23] Scaling of 1/f noise in nonequilibrium phase transitions
    Koverda, VP
    Skokov, VN
    TECHNICAL PHYSICS, 2004, 49 (09) : 1104 - 1109
  • [24] Quantum field theory for nonequilibrium phase transitions
    Kim, SP
    NON-LINEAR DYNAMICS AND FUNDAMENTAL INTERACTIONS, 2006, 213 : 277 - 291
  • [25] Nonequilibrium Quantum Phase Transitions in the Dicke Model
    Bastidas, V. M.
    Emary, C.
    Regler, B.
    Brandes, T.
    PHYSICAL REVIEW LETTERS, 2012, 108 (04)
  • [26] Automated Design Architecture for 1-D Cellular Automata Using Quantum Cellular Automata
    Mardiris, Vassilios A.
    Sirakoulis, Georgios Ch.
    Karafyllidis, Ioannis G.
    IEEE TRANSACTIONS ON COMPUTERS, 2015, 64 (09) : 2476 - 2489
  • [27] Quantum phase transitions in classical nonequilibrium processes
    Bettelheim, E
    Agam, O
    Shnerb, NM
    PHYSICA E, 2001, 9 (03): : 600 - 608
  • [28] Nonequilibrium quantum phase transitions in the Ising model
    Bastidas, V. M.
    Emary, C.
    Schaller, G.
    Brandes, T.
    PHYSICAL REVIEW A, 2012, 86 (06)
  • [29] One-Dimensional Quantum Cellular Automata
    Arrighi, Pablo
    Nesme, Vincent
    Werner, Reinhard
    INTERNATIONAL JOURNAL OF UNCONVENTIONAL COMPUTING, 2011, 7 (04) : 223 - 244
  • [30] Applying the Variational Principle to (1+1)-Dimensional Quantum Field Theories
    Haegeman, Jutho
    Cirac, Ignacio
    Osborne, Tobias J.
    Verschelde, Henri
    Verstraete, Frank
    PHYSICAL REVIEW LETTERS, 2010, 105 (25)