Asynchronism and nonequilibrium phase transitions in (1+1)-dimensional quantum cellular automata

被引:5
|
作者
Gillman, Edward [1 ,2 ]
Carollo, Federico [3 ]
Lesanovsky, Igor [1 ,2 ,3 ]
机构
[1] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
[2] Univ Nottingham, Ctr Math & Theoret Phys Quantum Nonequilibrium Sys, Nottingham NG7 2RD, England
[3] Univ Tubingen, Inst Theoret Phys, Morgenstelle 14, D-72076 Tubingen, Germany
基金
英国工程与自然科学研究理事会;
关键词
Backpropagation - Cellular automata - Quantum optics;
D O I
10.1103/PhysRevE.106.L032103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Probabilistic cellular automata provide a simple framework for exploring classical nonequilibrium processes. Recently, quantum cellular automata have been proposed that rely on the propagation of a one-dimensional quantum state along a fictitious discrete time dimension via the sequential application of quantum gates. The resulting (1 + 1)-dimensional space-time structure makes these automata special cases of recurrent quantum neural networks which can implement broad classes of classical nonequilibrium processes. Here, we present a general prescription by which these models can be extended into genuinely quantum nonequilibrium models via the systematic inclusion of asynchronism. This is illustrated for the classical contact process, where the resulting model is closely linked to the quantum contact process (QCP), developed in the framework of open quantum systems. Studying the mean-field behavior of the model, we find evidence of an "asynchronism transition, " i.e., a sudden qualitative change in the phase transition behavior once a certain degree of asynchronicity is surpassed, a phenomenon we link to observations in the QCP.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] (1+1)-dimensional QCD with static quarks as supersymmetric quantum mechanics
    Seeger, M
    Thies, M
    PHYSICAL REVIEW D, 1998, 58 (02):
  • [32] QUANTUM S-MATRIX OF THE (1+1)-DIMENSIONAL TODD CHAIN
    ARINSHTEIN, AE
    FATEYEV, VA
    ZAMOLODCHIKOV, AB
    PHYSICS LETTERS B, 1979, 87 (04) : 389 - 392
  • [33] Quantum-corrected entropy for (1+1)-dimensional gravity revisited
    Medved, AJM
    CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (11) : 2147 - 2156
  • [34] (1+1)-dimensional turbulence
    Benzi, R
    Biferale, L
    Tripiccione, R
    Trovatore, E
    PHYSICS OF FLUIDS, 1997, 9 (08) : 2355 - 2363
  • [35] Phase transitions in random mixtures of elementary cellular automata
    Cirillo, Emilio N. M.
    Nardi, Francesca R.
    Spitoni, Cristian
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 573
  • [36] Phase space reduction and the instanton crossover in (1+1)-dimensional turbulence
    Moriconi, L
    Dias, GS
    PHYSICS LETTERS A, 2001, 287 (5-6) : 356 - 364
  • [37] Nonequilibrium phase transitions in ferromagnetic semiconductors (EuO1–δ)
    A. G. Volkov
    А. А. Povzner
    А. N. Cherepanova
    Russian Physics Journal, 2009, 52 : 984 - 989
  • [38] NONEQUILIBRIUM PHASE TRANSITIONS IN FERROMAGNETIC SEMICONDUCTORS (EuO1-δ)
    Volkov, A. G.
    Povzner, A. A.
    Cherepanova, A. N.
    RUSSIAN PHYSICS JOURNAL, 2009, 52 (09) : 984 - 989
  • [39] Surface phase transitions in a (1+1)-dimensional SU (2)1 conformal field theory boundary coupled to a (2+1) -dimensional Z2 bulk
    Wang, Zhe
    Ning, Shang-Qiang
    Liu, Zenan
    Rong, Junchen
    Wang, Yan-Cheng
    Yan, Zheng
    Guo, Wena n
    PHYSICAL REVIEW B, 2024, 110 (11)
  • [40] Space-time-resolved quantum electrodynamics: A (1+1)-dimensional model
    Glasgow, Scott
    Smith, Dallas
    Pritchett, Luke
    Gardner, John
    Ware, Michael J.
    PHYSICAL REVIEW A, 2016, 93 (06)