LOCAL CONVERGENCE FOR SOME THIRD-ORDER ITERATIVE METHODS UNDER WEAK CONDITIONS

被引:22
|
作者
Argyros, Ioannis K. [1 ]
Cho, Yeol Je [2 ,3 ,4 ]
George, Santhosh [5 ]
机构
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[2] Gyeongsang Natl Univ, Dept Math Educ, Jinju 660701, South Korea
[3] Gyeongsang Natl Univ, RINS, Jinju 660701, South Korea
[4] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[5] NIT Karnataka, Dept Math & Computat Sci, Mangaluru 575025, Karnataka, India
基金
新加坡国家研究基金会;
关键词
Newton method; order of convergence; local convergence; NEWTONS METHOD; SEMILOCAL CONVERGENCE; RECURRENCE RELATIONS; R-ORDER; VARIANT;
D O I
10.4134/JKMS.j150244
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The solutions of equations are usually found using iterative methods whose convergence order is determined by Taylor expansions. In particular, the local convergence of the method we study in this paper is shown under hypotheses reaching the third derivative of the operator involved. These hypotheses limit the applicability of the method. In our study we show convergence of the method using only the first derivative. This way we expand the applicability of the method. Numerical examples show the applicability of our results in cases earlier results cannot.
引用
收藏
页码:781 / 793
页数:13
相关论文
共 50 条