Some modified Newton-type methods with order of convergence varied from two to six under weak conditions

被引:5
|
作者
Fang, Liang [1 ,4 ]
He, Guoping [2 ,4 ]
Hu, Yunhong [2 ,3 ]
Sun, Li [4 ]
机构
[1] Taishan Univ, Coll Math & Syst Sci, Tai An 271021, Shandong, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Informat Sci & Engn, Qingdao 266510, Peoples R China
[3] Yuncheng Univ, Dept Appl Math, Yuncheng 044000, Peoples R China
[4] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
NONLINEAR EQUATIONS; CUBIC CONVERGENCE;
D O I
10.1109/CSO.2009.284
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present some modified Newton-type methods for solving nonlinear equations. These algorithms are free from second derivatives and permit f'(x) = 0 in some iteration points. The convergent analysis demonstrates that the order of convergence and the efficiency index of the present methods are better. than that of the classical Newton's method. Some numerical examples are given to illustrate their efficiency and performance.
引用
收藏
页码:637 / +
页数:2
相关论文
共 50 条
  • [1] Weak convergence conditions for Inexact Newton-type methods
    Argyros, Ioannis K.
    Hilout, Said
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (06) : 2800 - 2809
  • [2] On the convergence of Newton-type methods under mild differentiability conditions
    Argyros, Ioannis K.
    Hilout, Said
    NUMERICAL ALGORITHMS, 2009, 52 (04) : 701 - 726
  • [3] On the convergence of Newton-type methods under mild differentiability conditions
    Ioannis K. Argyros
    Saïd Hilout
    Numerical Algorithms, 2009, 52 : 701 - 726
  • [4] Extended local convergence for Newton-type solver under weak conditions
    Argyros, Ioannis K.
    George, Santhosh
    Senapati, Kedarnath
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (04): : 757 - 768
  • [5] A CONVERGENCE THEOREM FOR SOME NEWTON TYPE METHODS UNDER WEAK SMOOTHNESS CONDITIONS
    Pacurar, Madalina
    Berinde, Vasile
    APLIMAT 2007 - 6TH INTERNATIONAL CONFERENCE, PT II, 2007, : 265 - 270
  • [6] On the local superlinear convergence of a Newton-type method for LCP under weak conditions
    Fischer, A
    OPTIMIZATION METHODS & SOFTWARE, 1995, 6 (02): : 83 - 107
  • [7] On a Newton-type method under weak conditions with dynamics
    Singh, Manoj Kumar
    Singh, Arvind K.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (08)
  • [8] On the local convergence of inexact Newton-type methods under residual control-type conditions
    Ren, Hongmin
    Argyros, Ioannis K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 235 (01) : 218 - 228
  • [9] A cubically convergent Newton-type method under weak conditions
    Fang, Liang
    He, Guoping
    Hu, Zhongyong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 220 (1-2) : 409 - 412
  • [10] Newton-type methods of high order and domains of semilocal and global convergence
    Ezquerro, J. A.
    Hernandez, M. A.
    Romero, N.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 214 (01) : 142 - 154