LOCAL CONVERGENCE FOR SOME THIRD-ORDER ITERATIVE METHODS UNDER WEAK CONDITIONS

被引:22
|
作者
Argyros, Ioannis K. [1 ]
Cho, Yeol Je [2 ,3 ,4 ]
George, Santhosh [5 ]
机构
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[2] Gyeongsang Natl Univ, Dept Math Educ, Jinju 660701, South Korea
[3] Gyeongsang Natl Univ, RINS, Jinju 660701, South Korea
[4] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[5] NIT Karnataka, Dept Math & Computat Sci, Mangaluru 575025, Karnataka, India
基金
新加坡国家研究基金会;
关键词
Newton method; order of convergence; local convergence; NEWTONS METHOD; SEMILOCAL CONVERGENCE; RECURRENCE RELATIONS; R-ORDER; VARIANT;
D O I
10.4134/JKMS.j150244
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The solutions of equations are usually found using iterative methods whose convergence order is determined by Taylor expansions. In particular, the local convergence of the method we study in this paper is shown under hypotheses reaching the third derivative of the operator involved. These hypotheses limit the applicability of the method. In our study we show convergence of the method using only the first derivative. This way we expand the applicability of the method. Numerical examples show the applicability of our results in cases earlier results cannot.
引用
收藏
页码:781 / 793
页数:13
相关论文
共 50 条
  • [31] On Global Convergence of Third-Order Chebyshev-Type Method under General Continuity Conditions
    Mallawi, Fouad Othman
    Behl, Ramandeep
    Maroju, Prashanth
    FRACTAL AND FRACTIONAL, 2022, 6 (01)
  • [32] NOTE ON THE ESTIMATION OF THE ORDER OF CONVERGENCE OF SOME ITERATIVE METHODS
    KJURKCHIEV, N
    BIT, 1992, 32 (03): : 525 - 528
  • [33] A CONVERGENCE THEOREM FOR SOME NEWTON TYPE METHODS UNDER WEAK SMOOTHNESS CONDITIONS
    Pacurar, Madalina
    Berinde, Vasile
    APLIMAT 2007 - 6TH INTERNATIONAL CONFERENCE, PT II, 2007, : 265 - 270
  • [34] Local convergence of some iterative methods for generalized equations
    Geoffroy, MH
    Piétrus, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 290 (02) : 497 - 505
  • [35] Dynamical Comparison of Several Third-Order Iterative Methods for Nonlinear Equations
    Solaiman, Obadah Said
    Karim, Samsul Ariffin Abdul
    Hashim, Ishak
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 67 (02): : 1951 - 1962
  • [36] Constructing attracting periodic orbits of three third-order iterative methods
    Amat, S
    Busquier, S
    Plaza, S
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 161 (02) : 679 - 690
  • [37] New Families of Third-Order Iterative Methods for Finding Multiple Roots
    Lin, R. F.
    Ren, H. M.
    Smarda, Z.
    Wu, Q. B.
    Khan, Y.
    Hu, J. L.
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [38] Several New Third-Order Iterative Methods for Solving Nonlinear Equations
    Changbum Chun
    Yong-Il Kim
    Acta Applicandae Mathematicae, 2010, 109 : 1053 - 1063
  • [39] Third-order iterative methods with applications to Hammerstein equations: A unified approach
    Amat, S.
    Busquier, S.
    Gutierrez, J. M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (09) : 2936 - 2943
  • [40] Several New Third-Order Iterative Methods for Solving Nonlinear Equations
    Chun, Changbum
    Kim, Yong-Il
    ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (03) : 1053 - 1063