Organic spin valves with inelastic tunneling characteristics

被引:30
|
作者
Li, Kai-Shin [1 ]
Chang, Yin-Ming [1 ]
Agilan, Santhanam [1 ]
Hong, Jhen-Yong [1 ]
Tai, Jung-Chi [1 ]
Chiang, Wen-Chung [3 ]
Fukutani, Keisuke [4 ]
Dowben, P. A. [4 ]
Lin, Minn-Tsong [1 ,2 ]
机构
[1] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan
[2] Acad Sinica, Inst Atom & Mol Sci, Taipei 10617, Taiwan
[3] Chinese Culture Univ, Dept Phys, Taipei 11114, Taiwan
[4] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Dept Phys & Astron, Lincoln, NE 68588 USA
来源
PHYSICAL REVIEW B | 2011年 / 83卷 / 17期
关键词
GIANT MAGNETORESISTANCE; JUNCTIONS; SEMICONDUCTOR; INTERFACE; CONDUCTANCE; INJECTION;
D O I
10.1103/PhysRevB.83.172404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electrons may experience inelastic coupling with the organic spacer layer during tunneling between two ferromagnetic electrodes. To probe the transport behavior of spin-polarized electrons in organic materials, organic spin valves were fabricated utilizing a relatively thin organic barrier of 3,4,9,10-perylene-teracarboxylic dianhydride (PTCDA) dusted with alumina at the organic/ferromagnetic interfaces. These structures, with an organic barrier layer, exhibited magnetoresistance up to 12% at room temperature. In studies of the inelastic tunneling spectrum, the observed characteristic peak of the organic layer provides direct evidence of the interplay between the spin-polarized electrons and the organic molecules. Combining the inelastic tunneling results with a simple molecular vibration calculation yields further information on the configuration of the molecular thin film and the possible tunneling states of the spin-polarized electrons. Such interplay indicates a true transport of spin-polarized electrons through organic material rather than through defects or interdiffusion compounds formed at the interfaces within the organic spin valve.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] INELASTIC TUNNELING CHARACTERISTICS OF ALAS GAAS HETEROJUNCTIONS
    COLLINS, RT
    LAMBE, J
    MCGILL, TC
    BURNHAM, RD
    APPLIED PHYSICS LETTERS, 1984, 44 (05) : 532 - 534
  • [22] The basis of organic spintronics: Fabrication of organic spin valves
    Chen Bin-Bin
    Jiang Sheng-Wei
    Ding Hai-Feng
    Jiang Zheng-Sheng
    Wu Di
    CHINESE PHYSICS B, 2014, 23 (01)
  • [23] The basis of organic spintronics: Fabrication of organic spin valves
    陈彬彬
    姜生伟
    丁海峰
    蒋正生
    吴镝
    Chinese Physics B, 2014, 23 (01) : 21 - 27
  • [24] Organic spin valves: the first organic spintronics devices
    Wang, Fujian
    Vardeny, Z. Valy
    JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (12) : 1685 - 1690
  • [25] Spin-polarized tunneling in room-temperature mesoscopic spin valves
    Valenzuela, SO
    Tinkham, M
    APPLIED PHYSICS LETTERS, 2004, 85 (24) : 5914 - 5916
  • [26] Introducing immobilized metal phthalocyanines as spin-injection and detection layers in organic spin-valves: Spin-tunneling and spin-transport regimes
    Banerjee, Arnab
    Kundu, Biswajit
    Pal, Amlan J.
    ORGANIC ELECTRONICS, 2017, 41 : 173 - 178
  • [27] Many-body effects on the tunneling magnetoresistance of spin valves
    Hong, JS
    Wu, RQ
    Mills, DL
    PHYSICAL REVIEW B, 2002, 66 (10) : 1 - 3
  • [28] Spin-dependent resonant tunneling based spin valves and spin-current sources
    Liu, SS
    Guo, GY
    CHINESE JOURNAL OF PHYSICS, 2000, 38 (06) : 1074 - 1078
  • [29] Spin transport in benzofurane bithiophene based organic spin valves
    Palosse, Mathieu
    Seguy, Isabelle
    Bedel-Pereira, Elena
    Villeneuve-Faure, Christina
    Mallet, Charlotte
    Frere, Pierre
    Warot-Fonrose, Benedicte
    Biziere, Nicolas
    Bobo, Jean-Francois
    AIP ADVANCES, 2014, 4 (01):
  • [30] Signatures of asymmetric and inelastic tunneling on the spin torque bias dependence
    Manchon, A.
    Zhang, S.
    Lee, K. -J.
    PHYSICAL REVIEW B, 2010, 82 (17):