Organic spin valves with inelastic tunneling characteristics

被引:30
|
作者
Li, Kai-Shin [1 ]
Chang, Yin-Ming [1 ]
Agilan, Santhanam [1 ]
Hong, Jhen-Yong [1 ]
Tai, Jung-Chi [1 ]
Chiang, Wen-Chung [3 ]
Fukutani, Keisuke [4 ]
Dowben, P. A. [4 ]
Lin, Minn-Tsong [1 ,2 ]
机构
[1] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan
[2] Acad Sinica, Inst Atom & Mol Sci, Taipei 10617, Taiwan
[3] Chinese Culture Univ, Dept Phys, Taipei 11114, Taiwan
[4] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Dept Phys & Astron, Lincoln, NE 68588 USA
来源
PHYSICAL REVIEW B | 2011年 / 83卷 / 17期
关键词
GIANT MAGNETORESISTANCE; JUNCTIONS; SEMICONDUCTOR; INTERFACE; CONDUCTANCE; INJECTION;
D O I
10.1103/PhysRevB.83.172404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electrons may experience inelastic coupling with the organic spacer layer during tunneling between two ferromagnetic electrodes. To probe the transport behavior of spin-polarized electrons in organic materials, organic spin valves were fabricated utilizing a relatively thin organic barrier of 3,4,9,10-perylene-teracarboxylic dianhydride (PTCDA) dusted with alumina at the organic/ferromagnetic interfaces. These structures, with an organic barrier layer, exhibited magnetoresistance up to 12% at room temperature. In studies of the inelastic tunneling spectrum, the observed characteristic peak of the organic layer provides direct evidence of the interplay between the spin-polarized electrons and the organic molecules. Combining the inelastic tunneling results with a simple molecular vibration calculation yields further information on the configuration of the molecular thin film and the possible tunneling states of the spin-polarized electrons. Such interplay indicates a true transport of spin-polarized electrons through organic material rather than through defects or interdiffusion compounds formed at the interfaces within the organic spin valve.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Inelastic electron tunneling spectroscopy of local "spin accumulation" devices
    Tinkey, Holly N.
    Li, Pengke
    Appelbaum, Ian
    APPLIED PHYSICS LETTERS, 2014, 104 (23)
  • [32] Spin-Polarized Inelastic Tunneling through Insulating Barriers
    Lu, Y.
    Tran, M.
    Jaffres, H.
    Seneor, P.
    Deranlot, C.
    Petroff, F.
    George, J-M.
    Lepine, B.
    Ababou, S.
    Jezequel, G.
    PHYSICAL REVIEW LETTERS, 2009, 102 (17)
  • [33] Cotunneling theory of atomic spin inelastic electron tunneling spectroscopy
    Delgado, F.
    Fernandez-Rossier, J.
    PHYSICAL REVIEW B, 2011, 84 (04)
  • [34] Organic spin-valves: Physics and applications
    Vardeny, ZV
    Xiong, ZH
    Wu, D
    Wang, F
    Shi, J
    ELECTRONIC PROPERTIES OF NOVEL NANOSTRUCTURES, 2005, 786 : 538 - 543
  • [35] Angular dependent magnetoresistance in organic spin valves
    Xia, Huayan
    Zhang, Sangjian
    Li, Hao
    Li, Tianli
    Liu, Fang
    Zhang, Wenchao
    Guo, Wang
    Miao, Tian
    Hu, Wenjie
    Shen, Jian
    Gao, Yongli
    Yang, Junliang
    Fang, Mei
    RESULTS IN PHYSICS, 2021, 22
  • [36] Preparation and assessment of reliable organic spin valves
    Sun, Wenchao
    Guo, Lidan
    Hu, Shunhua
    Zhu, Xiangwei
    Zhang, Xiaotao
    Hu, Wenping
    Sun, Xiangnan
    ORGANIC ELECTRONICS, 2021, 99
  • [37] The effect of dimerization on the magnetoresistance in organic spin valves
    王辉
    胡贵超
    任俊峰
    Chinese Physics B, 2013, (05) : 618 - 623
  • [38] Giant magnetoresistance in organic spin-valves
    Xiong, ZH
    Wu, D
    Vardeny, ZV
    Shi, J
    NATURE, 2004, 427 (6977) : 821 - 824
  • [39] Length dependence of magnetoresistance in organic spin valves
    Li, Dan
    Zhang, Huiqing
    Miao, Yuanyuan
    Ren, Junfeng
    Wang, Chuankui
    Hu, Guichao
    JOURNAL OF APPLIED PHYSICS, 2022, 131 (05)
  • [40] Role of the magnetic anisotropy in organic spin valves
    Kalappattil, V.
    Geng, R.
    Liang, S. H.
    Mukherjee, D.
    Devkota, J.
    Roy, A.
    Luong, M. H.
    Lai, N. D.
    Hornak, L. A.
    Nguyen, T. D.
    Zhao, W. B.
    Li, X. G.
    Duc, N. H.
    Das, R.
    Chandra, S.
    Srikanth, H.
    Phan, M. H.
    JOURNAL OF SCIENCE-ADVANCED MATERIALS AND DEVICES, 2017, 2 (03): : 378 - 384