Orientations in Legendrian contact homology and exact Lagrangian immersions

被引:60
|
作者
Ekholm, T [1 ]
Etnyre, J
Sullivan, M
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Univ Penn, Dept Math, Philadelphia, PA 19105 USA
[3] Univ Massachusetts, Dept Math, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
Legendrian submanifold; contact homology; orientation; exact Lagrangian immersion; double points;
D O I
10.1142/S0129167X05002941
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show how to orient moduli spaces of holomorphic disks with boundary on an exact Lagrangian immersion of a spin manifold into complex n-space in a coherent manner. This allows us to lift the coefficients of the contact homology of Legendrian spin sub-manifolds of standard contact (2n + 1)-space from Z(2) to Z. We demonstrate how the Z-lift provides a more refined invariant of Legendrian isotopy. We also apply contact homology to produce lower bounds on double points of certain exact Lagrangian immersions into C-n and again including orientations strengthens the results. More precisely, we prove that the number of double points of an exact Lagrangian immersion of a closed manifold M whose associated Legendrian embedding has good DGA is at least half of the dimension of the homology of M with coefficients in an arbitrary field if M is spin and in Z(2) otherwise.
引用
收藏
页码:453 / 532
页数:80
相关论文
共 50 条
  • [1] A DUALITY EXACT SEQUENCE FOR LEGENDRIAN CONTACT HOMOLOGY
    Ekholm, Tobias
    Etnyre, John B.
    Sabloff, Joshua M.
    DUKE MATHEMATICAL JOURNAL, 2009, 150 (01) : 1 - 75
  • [2] Rational SFT, Linearized Legendrian Contact Homology, and Lagrangian Floer Cohomology
    Ekholm, Tobias
    PERSPECTIVES IN ANALYSIS, GEOMETRY, AND TOPOLOGY: ON THE OCCASION OF THE 60TH BIRTHDAY OF OLEG VIRO, 2012, 296 : 109 - 145
  • [3] Legendrian ambient surgery and Legendrian contact homology
    Dimitroglou Rizell, Georgios
    JOURNAL OF SYMPLECTIC GEOMETRY, 2016, 14 (03) : 811 - 901
  • [4] LEGENDRIAN CONTACT HOMOLOGY AND NONDESTABILIZABILITY
    Shonkwiler, Clayton
    Vela-Vick, David Shea
    JOURNAL OF SYMPLECTIC GEOMETRY, 2011, 9 (01) : 33 - 44
  • [5] Duality for Legendrian contact homology
    Sabloff, Joshua M.
    GEOMETRY & TOPOLOGY, 2006, 10 : 2351 - 2381
  • [6] Legendrian knots and exact Lagrangian cobordisms
    Ekholm, Tobias
    Honda, Ko
    Kalman, Tamas
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2016, 18 (11) : 2627 - 2689
  • [7] Exact Lagrangian caps of Legendrian knots
    Lin, Francesco
    JOURNAL OF SYMPLECTIC GEOMETRY, 2016, 14 (01) : 269 - 295
  • [8] Contact Dynamics: Legendrian and Lagrangian Submanifolds
    Esen, Ogul
    Lainz Valcazar, Manuel
    de Leon, Manuel
    Marrero, Juan Carlos
    MATHEMATICS, 2021, 9 (21)
  • [9] On torsion in linearized Legendrian contact homology
    Golovko, Roman
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2023, 32 (07)
  • [10] Product structures for Legendrian contact homology
    Civan, Gokhan
    Koprowski, Paul
    Etnyre, John
    Sabloff, Joshua M.
    Walker, Alden
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2011, 150 : 291 - 311