Orientations in Legendrian contact homology and exact Lagrangian immersions

被引:60
|
作者
Ekholm, T [1 ]
Etnyre, J
Sullivan, M
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Univ Penn, Dept Math, Philadelphia, PA 19105 USA
[3] Univ Massachusetts, Dept Math, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
Legendrian submanifold; contact homology; orientation; exact Lagrangian immersion; double points;
D O I
10.1142/S0129167X05002941
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show how to orient moduli spaces of holomorphic disks with boundary on an exact Lagrangian immersion of a spin manifold into complex n-space in a coherent manner. This allows us to lift the coefficients of the contact homology of Legendrian spin sub-manifolds of standard contact (2n + 1)-space from Z(2) to Z. We demonstrate how the Z-lift provides a more refined invariant of Legendrian isotopy. We also apply contact homology to produce lower bounds on double points of certain exact Lagrangian immersions into C-n and again including orientations strengthens the results. More precisely, we prove that the number of double points of an exact Lagrangian immersion of a closed manifold M whose associated Legendrian embedding has good DGA is at least half of the dimension of the homology of M with coefficients in an arbitrary field if M is spin and in Z(2) otherwise.
引用
收藏
页码:453 / 532
页数:80
相关论文
共 50 条
  • [41] Lagrangian concordance of Legendrian knots
    Chantraine, Baptiste
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2010, 10 (01): : 63 - 85
  • [42] Lagrangian surfaces with Legendrian boundary
    Mingyan Li
    Guofang Wang
    Liangjun Weng
    Science China Mathematics, 2021, 64 : 1589 - 1598
  • [43] Lagrangian surfaces with Legendrian boundary
    Li, Mingyan
    Wang, Guofang
    Weng, Liangjun
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (07) : 1589 - 1598
  • [44] Surgery on Lagrangian and Legendrian Singularities
    M. Entov
    Geometric & Functional Analysis GAFA, 1999, 9 : 298 - 352
  • [45] An exact sequence for contact- and symplectic homology
    Bourgeois, Frederic
    Oancea, Alexandru
    INVENTIONES MATHEMATICAE, 2009, 175 (03) : 611 - 680
  • [46] An exact sequence for contact- and symplectic homology
    Frédéric Bourgeois
    Alexandru Oancea
    Inventiones mathematicae, 2009, 175 : 611 - 680
  • [47] On isometric Lagrangian immersions
    Moore, JD
    Morvan, JM
    ILLINOIS JOURNAL OF MATHEMATICS, 2001, 45 (03) : 833 - 849
  • [48] Homology for contact forms via legendrian curves of general dual 1-forms
    Bahri, Abbas
    ADVANCED NONLINEAR STUDIES, 2008, 8 (01) : 19 - 36
  • [49] Monopole Floer homology and Legendrian knots
    Sivek, Steven
    GEOMETRY & TOPOLOGY, 2012, 16 (02) : 751 - 779
  • [50] Lagrangian intersection under legendrian deformations
    Ono, K
    DUKE MATHEMATICAL JOURNAL, 1996, 85 (01) : 209 - 225