We prove that any Legendrian knot in (S-3, xi(std)) bounds an exact Lagrangian surface in R-4 \ B-4 after a sufficient number of stabilizations. In order to do this, we define Lagrangian projections, consisting of a knot projection along with some additional information, and construct a family of combinatorial moves which correspond to Lagrangian cobordisms between knots.
机构:
Google Inc, 1021 Valley St, Seattle, WA 98019 USAGoogle Inc, 1021 Valley St, Seattle, WA 98019 USA
Chen, Linyi
Crider-Phillips, Grant
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oregon, 1585 E 13th Ave, Eugene, OR 97403 USAGoogle Inc, 1021 Valley St, Seattle, WA 98019 USA
Crider-Phillips, Grant
Reinoso, Braeden
论文数: 0引用数: 0
h-index: 0
机构:
Boston Coll, Dept Math, Maloney Hall Fifth Floor,21 St Thomas More Rd, Chestnut Hill, MA 02467 USAGoogle Inc, 1021 Valley St, Seattle, WA 98019 USA
Reinoso, Braeden
Sabloff, Joshua
论文数: 0引用数: 0
h-index: 0
机构:
Haverford Coll, Dept Math, 370 Lancaster Ave, Haverford, PA 19041 USAGoogle Inc, 1021 Valley St, Seattle, WA 98019 USA
Sabloff, Joshua
Yao, Leyu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cambridge, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, EnglandGoogle Inc, 1021 Valley St, Seattle, WA 98019 USA