Exact Lagrangian caps of Legendrian knots

被引:6
|
作者
Lin, Francesco [1 ]
机构
[1] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
D O I
10.4310/JSG.2016.v14.n1.a10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that any Legendrian knot in (S-3, xi(std)) bounds an exact Lagrangian surface in R-4 \ B-4 after a sufficient number of stabilizations. In order to do this, we define Lagrangian projections, consisting of a knot projection along with some additional information, and construct a family of combinatorial moves which correspond to Lagrangian cobordisms between knots.
引用
收藏
页码:269 / 295
页数:27
相关论文
共 50 条
  • [31] On the support genus of Legendrian knots
    Sinem Onaran
    Archiv der Mathematik, 2021, 116 : 469 - 479
  • [32] Lagrangian and Legendrian singularities
    Goryunov, Victor V.
    Zakalyukin, V. M.
    REAL AND COMPLEX SINGULARITIES, 2007, : 169 - +
  • [33] On Legendrian knots and polynomial invariants
    Ferrand, E
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (04) : 1169 - 1176
  • [34] On connected sums and Legendrian knots
    Etnyre, JB
    Honda, K
    ADVANCES IN MATHEMATICS, 2003, 179 (01) : 59 - 74
  • [35] Lagrangian and legendrian singularities
    Goryunov, V. V.
    Zakalyukin, V. M.
    SINGULARITY THEORY, 2007, : 157 - +
  • [36] Exceptional Legendrian Torus Knots
    Geiges, Hansjorg
    Onaran, Sinem
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (22) : 8786 - 8817
  • [37] Legendrian and transverse twist knots
    Etnyre, John B.
    Ng, Lenhard L.
    Vertesi, Vera
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (03) : 969 - 995
  • [38] Holonomic and Legendrian parametrizations of knots
    Birman, JS
    Wrinkle, NC
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2000, 9 (03) : 293 - 309
  • [39] Legendrian knots and constructible sheaves
    Vivek Shende
    David Treumann
    Eric Zaslow
    Inventiones mathematicae, 2017, 207 : 1031 - 1133
  • [40] Legendrian knots, transverse knots and combinatorial Floer homology
    Ozsvath, Peter
    Szabo, Zoltan
    Thurston, Dylan
    GEOMETRY & TOPOLOGY, 2008, 12 : 941 - 980