Anti-van der Waerden Numbers on Graphs

被引:2
|
作者
Berikkyzy, Zhanar [1 ]
Schulte, Alex [2 ]
Sprangel, Elizabeth [2 ]
Walker, Shanise [3 ]
Warnberg, Nathan [4 ]
Young, Michael [2 ]
机构
[1] Fairfield Univ, Fairfield, CT 06430 USA
[2] Iowa State Univ, Ames, IA 50011 USA
[3] Univ Wisconsin, Eau Claire, WI 54701 USA
[4] Univ Wisconsin, La Crosse, WI 54601 USA
基金
美国国家科学基金会;
关键词
Anti-van der Waerden number; Rainbow; k-term arithmetic progression; Ramsey number; RAINBOW ARITHMETIC PROGRESSIONS;
D O I
10.1007/s00373-022-02516-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper arithmetic progressions on the integers and the integers modulo n are extended to graphs. A k-term arithmetic progression of a graphG (k-AP) is a list of k distinct vertices such that the distance between consecutive pairs is constant. A rainbow k-AP is a k-AP where each vertex is colored distinctly. This allows for the definition of the anti-van der Waerden number of a graphG, which is the least positive integer r such that every exact r-coloring of G contains a rainbow k-AP. Much of the focus of this paper is on 3-term arithmetic progressions for which general bounds are obtained based on the radius and diameter of a graph. The general bounds are improved for trees and Cartesian products and exact values are determined for some classes of graphs. Longer k-term arithmetic progressions are considered and a connection between the Ramsey number of paths and the anti-van der Waerden number of graphs is established.Please confirm if the inserted city and country name for all affiliations is correct. Amend if necessary.The cities and affiliations are correct.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] On semi-progression van der Waerden numbers
    Zehui Shao
    Xiaodong Xu
    Computational and Applied Mathematics, 2013, 32 : 19 - 25
  • [12] IMPROVED LOWER BOUNDS FOR VAN DER WAERDEN NUMBERS
    Hunter, Zach
    COMBINATORICA, 2022, 42 (SUPPL 2) : 1231 - 1252
  • [13] On semi-progression van der Waerden numbers
    Shao, Zehui
    Xu, Xiaodong
    COMPUTATIONAL & APPLIED MATHEMATICS, 2013, 32 (01): : 19 - 25
  • [14] A novel SAT solver for the Van der Waerden numbers
    Munira A. Abd El-Maksoud
    Areeg Abdalla
    Journal of the Egyptian Mathematical Society, 27 (1)
  • [15] Lower bounds for multicolor van der Waerden numbers
    Hunter, Zach
    ISRAEL JOURNAL OF MATHEMATICS, 2025,
  • [16] Improved Lower Bounds for Van Der Waerden Numbers
    Zach Hunter
    Combinatorica, 2022, 42 : 1231 - 1252
  • [17] A new lower bound for van der Waerden numbers
    Blankenship, Thomas
    Cummings, Jay
    Taranchuk, Vladislav
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 69 : 163 - 168
  • [18] On the van der Waerden numbers w(2; 3, t)
    Ahmed, Tanbir
    Kullmann, Oliver
    Snevily, Hunter
    DISCRETE APPLIED MATHEMATICS, 2014, 174 : 27 - 51
  • [19] A Set-Coloring Generalization of van der Waerden Numbers
    Xiu, Baoxin
    Li, Guangming
    Liang, Meilian
    Xu, Xiaodong
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2014, 11 (12) : 2431 - 2436
  • [20] SOME RESULTS ON A CLASS OF MIXED VAN DER WAERDEN NUMBERS
    Maran, Kaushik
    Reddy, Sai Praneeth
    Sharma, Dravyansh
    Tripathi, Amitabha
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (03) : 885 - 904