Anti-van der Waerden Numbers on Graphs

被引:2
|
作者
Berikkyzy, Zhanar [1 ]
Schulte, Alex [2 ]
Sprangel, Elizabeth [2 ]
Walker, Shanise [3 ]
Warnberg, Nathan [4 ]
Young, Michael [2 ]
机构
[1] Fairfield Univ, Fairfield, CT 06430 USA
[2] Iowa State Univ, Ames, IA 50011 USA
[3] Univ Wisconsin, Eau Claire, WI 54701 USA
[4] Univ Wisconsin, La Crosse, WI 54601 USA
基金
美国国家科学基金会;
关键词
Anti-van der Waerden number; Rainbow; k-term arithmetic progression; Ramsey number; RAINBOW ARITHMETIC PROGRESSIONS;
D O I
10.1007/s00373-022-02516-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper arithmetic progressions on the integers and the integers modulo n are extended to graphs. A k-term arithmetic progression of a graphG (k-AP) is a list of k distinct vertices such that the distance between consecutive pairs is constant. A rainbow k-AP is a k-AP where each vertex is colored distinctly. This allows for the definition of the anti-van der Waerden number of a graphG, which is the least positive integer r such that every exact r-coloring of G contains a rainbow k-AP. Much of the focus of this paper is on 3-term arithmetic progressions for which general bounds are obtained based on the radius and diameter of a graph. The general bounds are improved for trees and Cartesian products and exact values are determined for some classes of graphs. Longer k-term arithmetic progressions are considered and a connection between the Ramsey number of paths and the anti-van der Waerden number of graphs is established.Please confirm if the inserted city and country name for all affiliations is correct. Amend if necessary.The cities and affiliations are correct.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] RAMSEY FUNCTIONS RELATED TO THE VAN-DER-WAERDEN NUMBERS
    LANDMAN, BM
    DISCRETE MATHEMATICS, 1992, 102 (03) : 265 - 278
  • [22] Van der Waerden spaces
    Kojman, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (03) : 631 - 635
  • [23] The 2-color relative linear Van der Waerden numbers
    Kim, Byeong Moon
    Rho, Yoomi
    COMPTES RENDUS MATHEMATIQUE, 2007, 345 (04) : 183 - 186
  • [24] A lower bound for off-diagonal van der Waerden numbers
    Li, Yusheng
    Shu, Jinlong
    ADVANCES IN APPLIED MATHEMATICS, 2010, 44 (03) : 243 - 247
  • [25] Some Lower Bounds for Three Color Van Der Waerden Numbers
    Li, Yong
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (03) : 620 - 623
  • [26] A new method to construct lower bounds for Van der Waerden numbers
    Herwig, P. R.
    Heule, M. J. H.
    van Lambalgen, P. M.
    van Maaren, H.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):
  • [27] van der Waerden and the Primes
    Alpoge, Levent
    AMERICAN MATHEMATICAL MONTHLY, 2015, 122 (08): : 784 - 785
  • [28] ON A FUNCTION OF VAN DER WAERDEN
    SCHUBERT, SR
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (04): : 402 - &
  • [29] The van der Waerden complex
    Ehrenborg, Richard
    Govindaiah, Likith
    Park, Peter S.
    Readdy, Margaret
    JOURNAL OF NUMBER THEORY, 2017, 172 : 287 - 300
  • [30] Van der Waerden rings
    Remus, Dieter
    Ursul, Mihail
    TOPOLOGY AND ITS APPLICATIONS, 2017, 229 : 148 - 175