On semi-progression van der Waerden numbers

被引:0
|
作者
Shao, Zehui [1 ,2 ]
Xu, Xiaodong [3 ]
机构
[1] Chengdu Univ, Sch Informat Sci & Technol, Chengdu 610106, Peoples R China
[2] Inst Higher Educ Sichuan Prov, Key Lab Pattern Recognit & Intelligent Informat P, Chengdu, Peoples R China
[3] Guangxi Acad Sci, Nanning 530007, Peoples R China
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2013年 / 32卷 / 01期
关键词
Arithmetic progression; Szemeredi's theorem; Dynamic programming; Semi-progression;
D O I
10.1007/s40314-013-0003-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, a dynamic programming-like method is used to detect k-term semi-progression efficiently. By using this approach, we obtain some exact values and new lower bounds on semi-progression van der Waerden numbers.
引用
收藏
页码:19 / 25
页数:7
相关论文
共 50 条
  • [1] On semi-progression van der Waerden numbers
    Zehui Shao
    Xiaodong Xu
    Computational and Applied Mathematics, 2013, 32 : 19 - 25
  • [2] Bounds on some van der Waerden numbers
    Brown, Tom
    Landman, Bruce M.
    Robertson, Aaron
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (07) : 1304 - 1309
  • [3] Some More Van der Waerden Numbers
    Ahmed, Tanbir
    JOURNAL OF INTEGER SEQUENCES, 2013, 16 (04)
  • [4] Satisfiability and computing van der Waerden numbers
    Dransfield, MR
    Marek, VW
    Truszczynski, M
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING, 2004, 2919 : 1 - 13
  • [5] Satisfiability and computing van der Waerden numbers
    Dransfield, MR
    Marek, VW
    Liu, LN
    Truszcynski, M
    ELECTRONIC JOURNAL OF COMBINATORICS, 2004, 11 (01):
  • [6] New lower bounds for van der Waerden numbers
    Green, Ben
    FORUM OF MATHEMATICS PI, 2022, 10
  • [7] Anti-van der Waerden Numbers on Graphs
    Berikkyzy, Zhanar
    Schulte, Alex
    Sprangel, Elizabeth
    Walker, Shanise
    Warnberg, Nathan
    Young, Michael
    GRAPHS AND COMBINATORICS, 2022, 38 (04)
  • [8] IMPROVED LOWER BOUNDS FOR VAN DER WAERDEN NUMBERS
    Hunter, Zach
    COMBINATORICA, 2022, 42 (SUPPL 2) : 1231 - 1252
  • [9] A novel SAT solver for the Van der Waerden numbers
    Munira A. Abd El-Maksoud
    Areeg Abdalla
    Journal of the Egyptian Mathematical Society, 27 (1)
  • [10] Anti-van der Waerden Numbers on Graphs
    Zhanar Berikkyzy
    Alex Schulte
    Elizabeth Sprangel
    Shanise Walker
    Nathan Warnberg
    Michael Young
    Graphs and Combinatorics, 2022, 38