Euclidean geometric objects in the Clifford geometric algebra of {origin, 3-space, infinity}

被引:9
|
作者
Hitzer, EMS [1 ]
机构
[1] Univ Fukui, Dept Engn Phys, 3-9-1 Bunkyo, Fukui 9108507, Japan
关键词
Clifford algebra; geometric algebra; Horosphere; position; orientation; radius; 3D Euclidean object modeling;
D O I
10.36045/bbms/1110205625
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper concentrates on the homogeneous (conformal) model of Euclidean space (Horosphere) with subspaces that intuitively correspond to Euclidean geometric objects in three dimensions. Mathematical details of the construction and (useful) parametrizations of the 3D Euclidean object models are explicitly demonstrated in order to show how 3D Euclidean information on positions, orientations and radii can be extracted.
引用
收藏
页码:653 / 662
页数:10
相关论文
共 50 条
  • [21] Interactive 3D Space Group Visualization with CLUCalc and the Clifford Geometric Algebra Description of Space Groups
    Eckhard Hitzer
    Christian Perwass
    Advances in Applied Clifford Algebras, 2010, 20 : 631 - 658
  • [22] Interactive 3D Space Group Visualization with CLUCalc and the Clifford Geometric Algebra Description of Space Groups
    Hitzer, Eckhard
    Perwass, Christian
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2010, 20 (3-4) : 631 - 658
  • [23] Direct Linear Interpolation of Geometric Objects in Conformal Geometric Algebra
    H. Hadfield
    J. Lasenby
    Advances in Applied Clifford Algebras, 2019, 29
  • [24] Direct Linear Interpolation of Geometric Objects in Conformal Geometric Algebra
    Hadfield, H.
    Lasenby, J.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (04)
  • [25] Automated geometric theorem proving, Clifford bracket algebra and Clifford expansions
    Li, HB
    ADVANCES IN ANALYSIS AND GEOMETRY: NEW DEVELOPMENTS USING CLIFFORD ALGEBRAS, 2004, : 345 - 363
  • [26] Homomorphic Data Concealment Powered by Clifford Geometric Algebra
    da Silva, David W. H. A.
    Xavier, Marcelo A.
    Brown, Philip N.
    Chow, Edward
    de Araujo, Carlos Paz
    ADVANCES IN COMPUTER GRAPHICS, CGI 2020, 2020, 12221 : 513 - 525
  • [28] Geometric Characterizations of Canal Surfaces in Minkowski 3-Space II
    Qian, Jinhua
    Su, Mengfei
    Fu, Xueshan
    Jung, Seoung Dal
    MATHEMATICS, 2019, 7 (08)
  • [29] GEOMETRIC CHARACTERIZATIONS OF CANAL SURFACES IN MINKOWSKI 3-SPACE I
    Fu, Xueshan
    Jung, Seoung Dal
    Qian, Jinhua
    Su, Mengfei
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (04) : 867 - 883
  • [30] The geometric associative algebras of Euclidean space
    W. P. Joyce
    P. H. Butler
    Advances in Applied Clifford Algebras, 2002, 12 (2) : 195 - 233