Homomorphic Data Concealment Powered by Clifford Geometric Algebra

被引:1
|
作者
da Silva, David W. H. A. [1 ]
Xavier, Marcelo A. [2 ]
Brown, Philip N. [1 ]
Chow, Edward [1 ]
de Araujo, Carlos Paz [1 ]
机构
[1] Univ Colorado Colorado Springs, Colorado Springs, CO 80918 USA
[2] Ford Motor Co, Dearborn, MI 48124 USA
来源
关键词
Data concealment; Data hiding; Homomorphisms; Multivector packing; Clifford geometric algebra;
D O I
10.1007/978-3-030-61864-3_44
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose general-purpose methods for data representation and data concealment via multivector decompositions and a small subset of functions in the three dimensional Clifford geometric algebra. We demonstrate mechanisms that can be explored for purposes from plain data manipulation to homomorphic data processing with multivectors. The wide variety of algebraic representations in Clifford geometric algebra allow us to explore concepts from integer, complex, vector and matrix arithmetic within a single, compact, flexible and yet powerful algebraic structure in order to propose novel homomorphisms. Our constructions can be incorporated into existing applications as add-ons as well as used to provide standalone data-centric algorithms. We implement our representation and concealment mechanisms in the Ruby programming language to demonstrate the ideas discussed in this work.
引用
收藏
页码:513 / 525
页数:13
相关论文
共 50 条
  • [1] Clifford algebras and geometric algebra
    G. Aragón
    J. L. Aragón
    M. A. Rodríguez
    Advances in Applied Clifford Algebras, 1997, 7 (2) : 91 - 102
  • [2] Applications of Clifford's Geometric Algebra
    Hitzer, Eckhard
    Nitta, Tohru
    Kuroe, Yasuaki
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2013, 23 (02) : 377 - 404
  • [3] Crystal planes in Clifford geometric algebra
    Hitzer, Eckhard
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C333 - C333
  • [4] Applications of Clifford’s Geometric Algebra
    Eckhard Hitzer
    Tohru Nitta
    Yasuaki Kuroe
    Advances in Applied Clifford Algebras, 2013, 23 : 377 - 404
  • [5] Magnetic Order in Clifford Geometric Algebra
    Blackburn, Elizabeth
    Bernhoeft, Nic
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2006, 75 : 63 - 67
  • [6] Quantum ring in the eyes of geometric (Clifford) algebra
    Dargys, A.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2013, 47 : 47 - 50
  • [7] Current survey of Clifford geometric algebra applications
    Hitzer, Eckhard
    Lavor, Carlile
    Hildenbrand, Dietmar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (03) : 1331 - 1361
  • [8] New Applications of Clifford's Geometric Algebra
    Breuils, Stephane
    Tachibana, Kanta
    Hitzer, Eckhard
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2022, 32 (02)
  • [9] Experiments with Clifford Geometric Algebra Applied to Cryptography
    da Silva, David W. H. A.
    Xavier, Marcelo A.
    Chow, C. Edward
    de Araujo, Carlos Paz
    2020 JOINT 11TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS AND 21ST INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (SCIS-ISIS), 2020, : 420 - 427
  • [10] New Applications of Clifford’s Geometric Algebra
    Stephane Breuils
    Kanta Tachibana
    Eckhard Hitzer
    Advances in Applied Clifford Algebras, 2022, 32