Euclidean geometric objects in the Clifford geometric algebra of {origin, 3-space, infinity}

被引:9
|
作者
Hitzer, EMS [1 ]
机构
[1] Univ Fukui, Dept Engn Phys, 3-9-1 Bunkyo, Fukui 9108507, Japan
关键词
Clifford algebra; geometric algebra; Horosphere; position; orientation; radius; 3D Euclidean object modeling;
D O I
10.36045/bbms/1110205625
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper concentrates on the homogeneous (conformal) model of Euclidean space (Horosphere) with subspaces that intuitively correspond to Euclidean geometric objects in three dimensions. Mathematical details of the construction and (useful) parametrizations of the 3D Euclidean object models are explicitly demonstrated in order to show how 3D Euclidean information on positions, orientations and radii can be extracted.
引用
收藏
页码:653 / 662
页数:10
相关论文
共 50 条
  • [41] Covariant isotropic constitutive relations in clifford's geometric algebra
    Puska, P
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2001, 15 (03) : 409 - 410
  • [42] On the Relationship Between Geometric Objects and Figures in Euclidean Geometry
    Bacelar Valente, Mario
    DIAGRAMMATIC REPRESENTATION AND INFERENCE, DIAGRAMS 2021, 2021, 12909 : 71 - 78
  • [43] SPIN MODEL EUCLIDEAN 3-SPACE
    EBERLEIN, WF
    AMERICAN MATHEMATICAL MONTHLY, 1962, 69 (07): : 587 - &
  • [44] On rectifying curves in Euclidean 3-space
    Deshmukh, Sharief
    Chen, Bang-Yen
    Alshammari, Sana Hamoud
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (02) : 609 - 620
  • [45] Elastic knots in euclidean 3-space
    Von, Der Mosel, Heiko
    Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis, 16 (02): : 137 - 166
  • [46] ON THE HASIMOTO SURFACES IN EUCLIDEAN 3-SPACE
    Kaymanli, Gul Ugur
    Ekici, Cumali
    Kocak, Mahmut
    JOURNAL OF SCIENCE AND ARTS, 2022, (04): : 883 - 890
  • [47] EMBEDDING GRAPHS IN EUCLIDEAN 3-SPACE
    DEWDNEY, AK
    AMERICAN MATHEMATICAL MONTHLY, 1977, 84 (05): : 372 - 373
  • [48] EMBEDDINGS OF SURFACES IN EUCLIDEAN 3-SPACE
    BURGESS, CE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (07): : A629 - A629
  • [49] Separable systems in euclidean 3-space
    Phillips, M
    PHYSICAL REVIEW, 1934, 45 (06): : 0427 - 0428
  • [50] Elastic knots in Euclidean 3-space
    Von der Mosel, H
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1999, 16 (02): : 137 - 166