Cylindrical convergence effects on the Rayleigh-Taylor instability in elastic and viscous media

被引:9
|
作者
Piriz, A. R. [1 ,2 ]
Piriz, S. A. [3 ,4 ]
Tahir, N. A. [5 ]
机构
[1] ETSII, Inst Invest Energet INEI, Ciudad Real 13071, Spain
[2] Univ Castilla La Mancha, CYTEMA, Ciudad Real 13071, Spain
[3] ETSIA, Inst Invest Energet INEI, Toledo 45071, Spain
[4] Univ Castilla La Mancha, CYTEMA, Toledo 45071, Spain
[5] GSI Hehnholtzzentrum Schwerionenforsch Darmstadt, Planckstr 1, D-64291 Darmstadt, Germany
关键词
SHELL;
D O I
10.1103/PhysRevE.106.015109
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Convergence effects on the perturbation growth of an imploding surface separating two nonideal material media (elastic and viscous media) are analyzed in the case of a cylindrical implosion in both the Rayleigh-Taylor stable and unstable configurations. In the stable configuration, the perturbation damping effect due to angular momentum conservation becomes destroyed for sufficiently high values of the elastic modulus or of the viscosity of the media. For the unstable configuration, Rayleigh-Taylor instability can be suppressed by the elasticity or mitigated by the viscosity, but without practically affecting the perturbation growth due to the geometrical convergence. However, the convergence effects manifest themselves in a manner somewhat different from the classical Bell-Plesset effect by making the process more sensitive to the media compressibility than in the case involving ideal media.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Rayleigh-Taylor instability of cylindrical jets with radial motion
    GE Nuclear Energy, M/C F21, PO Box 780, Wilmington, NC 28402, United States
    不详
    Nucl Eng Des, 1-3 (121-129):
  • [42] Nonlinear saturation amplitude of cylindrical Rayleigh-Taylor instability
    Liu Wan-Hai
    Yu Chang-Ping
    Ye Wen-Hua
    Wang Li-Feng
    CHINESE PHYSICS B, 2014, 23 (09)
  • [43] EFFECTS OF TURBULENCE ON RAYLEIGH-TAYLOR INSTABILITY
    CLAUSER, MJ
    BAKER, L
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (09): : 1189 - 1189
  • [44] Rayleigh-Taylor instability of cylindrical jets with radial motion
    Chen, XM
    Schrock, VE
    Peterson, PF
    NUCLEAR ENGINEERING AND DESIGN, 1997, 177 (1-3) : 121 - 129
  • [45] RAYLEIGH-TAYLOR INSTABILITY
    PLESSET, MS
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (11): : 1095 - 1095
  • [46] RAYLEIGH-TAYLOR INSTABILITY
    BABENKO, KI
    PETROVICH, VI
    DOKLADY AKADEMII NAUK SSSR, 1979, 245 (03): : 551 - 554
  • [47] Finite boundary effects on the spherical Rayleigh-Taylor instability between viscous fluids
    Oren, Garrett H.
    Terrones, Guillermo
    AIP ADVANCES, 2022, 12 (04)
  • [48] The Rayleigh-Taylor instability
    Piriz, A. R.
    Cortazar, O. D.
    Lopez Cela, J. J.
    Tahir, N. A.
    AMERICAN JOURNAL OF PHYSICS, 2006, 74 (12) : 1095 - 1098
  • [49] Rayleigh-Taylor instability in elastic-plastic solids
    Piriz, A. R.
    Lopez Cela, J. J.
    Tahir, N. A.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (11)
  • [50] Numerical simulations of Rayleigh-Taylor instability in elastic solids
    Lopez Cela, J. J.
    Piriz, A. R.
    Serna Moreno, M. C.
    Tahir, N. A.
    LASER AND PARTICLE BEAMS, 2006, 24 (03) : 427 - 435