Cylindrical convergence effects on the Rayleigh-Taylor instability in elastic and viscous media

被引:9
|
作者
Piriz, A. R. [1 ,2 ]
Piriz, S. A. [3 ,4 ]
Tahir, N. A. [5 ]
机构
[1] ETSII, Inst Invest Energet INEI, Ciudad Real 13071, Spain
[2] Univ Castilla La Mancha, CYTEMA, Ciudad Real 13071, Spain
[3] ETSIA, Inst Invest Energet INEI, Toledo 45071, Spain
[4] Univ Castilla La Mancha, CYTEMA, Toledo 45071, Spain
[5] GSI Hehnholtzzentrum Schwerionenforsch Darmstadt, Planckstr 1, D-64291 Darmstadt, Germany
关键词
SHELL;
D O I
10.1103/PhysRevE.106.015109
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Convergence effects on the perturbation growth of an imploding surface separating two nonideal material media (elastic and viscous media) are analyzed in the case of a cylindrical implosion in both the Rayleigh-Taylor stable and unstable configurations. In the stable configuration, the perturbation damping effect due to angular momentum conservation becomes destroyed for sufficiently high values of the elastic modulus or of the viscosity of the media. For the unstable configuration, Rayleigh-Taylor instability can be suppressed by the elasticity or mitigated by the viscosity, but without practically affecting the perturbation growth due to the geometrical convergence. However, the convergence effects manifest themselves in a manner somewhat different from the classical Bell-Plesset effect by making the process more sensitive to the media compressibility than in the case involving ideal media.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Thin plate effects in the Rayleigh-Taylor instability of elastic solids
    Piriz, A. R.
    Lopez Cela, J. J.
    Serena Moreno, M. C.
    Tahir, N. A.
    Hoffmann, D. H. H.
    LASER AND PARTICLE BEAMS, 2006, 24 (02) : 275 - 282
  • [22] Rayleigh-Taylor instability in soft elastic layers
    Riccobelli, D.
    Ciarletta, P.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 375 (2093):
  • [23] Nonlinear hydromagnetic Rayleigh-Taylor instability for strong viscous fluids in porous media
    El-Dib, YO
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2003, 260 (1-2) : 1 - 18
  • [24] Rayleigh-Taylor Instability for Viscous Incompressible Capillary Fluids
    Zhang, Zhipeng
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (03)
  • [25] Rayleigh-Taylor instability in quantum magnetized viscous plasma
    G. A. Hoshoudy
    Plasma Physics Reports, 2011, 37 : 775 - 784
  • [26] Rayleigh-Taylor instability of viscous fluids with phase change
    Kim, Byoung Jae
    Kim, Kyung Doo
    PHYSICAL REVIEW E, 2016, 93 (04)
  • [27] Viscous Rayleigh-Taylor instability with and without diffusion effect
    Xie, Chenyue
    Tao, Jianjun
    Li, Ji
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2017, 38 (02) : 263 - 270
  • [28] On the Rayleigh-Taylor Instability for the Incompressible Viscous Magnetohydrodynamic Equations
    Jiang, Fei
    Jiang, Song
    Wang, Yanjin
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (03) : 399 - 438
  • [29] LINEAR RAYLEIGH-TAYLOR INSTABILITY FOR VISCOUS, COMPRESSIBLE FLUIDS
    Guo, Yan
    Tice, Ian
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (04) : 1688 - 1720
  • [30] The magnetic Rayleigh-Taylor instability for inviscid and viscous fluids
    Chambers, K.
    Forbes, L. K.
    PHYSICS OF PLASMAS, 2011, 18 (05)