Cylindrical convergence effects on the Rayleigh-Taylor instability in elastic and viscous media

被引:9
|
作者
Piriz, A. R. [1 ,2 ]
Piriz, S. A. [3 ,4 ]
Tahir, N. A. [5 ]
机构
[1] ETSII, Inst Invest Energet INEI, Ciudad Real 13071, Spain
[2] Univ Castilla La Mancha, CYTEMA, Ciudad Real 13071, Spain
[3] ETSIA, Inst Invest Energet INEI, Toledo 45071, Spain
[4] Univ Castilla La Mancha, CYTEMA, Toledo 45071, Spain
[5] GSI Hehnholtzzentrum Schwerionenforsch Darmstadt, Planckstr 1, D-64291 Darmstadt, Germany
关键词
SHELL;
D O I
10.1103/PhysRevE.106.015109
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Convergence effects on the perturbation growth of an imploding surface separating two nonideal material media (elastic and viscous media) are analyzed in the case of a cylindrical implosion in both the Rayleigh-Taylor stable and unstable configurations. In the stable configuration, the perturbation damping effect due to angular momentum conservation becomes destroyed for sufficiently high values of the elastic modulus or of the viscosity of the media. For the unstable configuration, Rayleigh-Taylor instability can be suppressed by the elasticity or mitigated by the viscosity, but without practically affecting the perturbation growth due to the geometrical convergence. However, the convergence effects manifest themselves in a manner somewhat different from the classical Bell-Plesset effect by making the process more sensitive to the media compressibility than in the case involving ideal media.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Viscous-resistive layer in Rayleigh-Taylor instability
    Silveira, F. E. M.
    Orlandi, H. I.
    PHYSICS OF PLASMAS, 2017, 24 (03)
  • [32] Rayleigh-Taylor instability of an inclined buoyant viscous cylinder
    Lister, John R.
    Kerr, Ross C.
    Russell, Nick J.
    Crosby, Andrew
    JOURNAL OF FLUID MECHANICS, 2011, 671 : 313 - 338
  • [33] Development of Rayleigh-Taylor instability in compressible media
    Zajtsev, S.G.
    Krivets, V.V.
    Titov, S.N.
    Chebotareva, E.I.
    Izvestiya Akademii Nauk. Mekhanika Zhidkosti I Gaza, 1600, (03): : 16 - 26
  • [34] Viscous Rayleigh-Taylor instability with and without diffusion effect
    Chenyue XIE
    Jianjun TAO
    Ji LI
    Applied Mathematics and Mechanics(English Edition), 2017, 38 (02) : 263 - 270
  • [35] Rayleigh-Taylor instability for incompressible viscous quantum flows
    Chang, Shengchuang
    Duan, Ran
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (01)
  • [36] Rayleigh-Taylor Instability in Quantum Magnetized Viscous Plasma
    Hoshoudy, G. A.
    PLASMA PHYSICS REPORTS, 2011, 37 (09) : 775 - 784
  • [37] RAYLEIGH-TAYLOR INSTABILITY OF THIN VISCOUS LAYERS - REPLY
    PLESSET, MS
    WHIPPLE, CG
    PHYSICS OF FLUIDS, 1976, 19 (03) : 485 - 485
  • [38] Viscous Rayleigh-Taylor instability with and without diffusion effect
    Chenyue Xie
    Jianjun Tao
    Ji Li
    Applied Mathematics and Mechanics, 2017, 38 : 263 - 270
  • [39] Rayleigh-Taylor instability in accelerated solid media
    Piriz, A. R.
    Sun, Y. B.
    Tahir, N. A.
    EUROPEAN JOURNAL OF PHYSICS, 2017, 38 (01)
  • [40] Rayleigh-Taylor instability in cylindrical geometry with compressible fluids
    Yu, Huidan
    Livescu, Daniel
    PHYSICS OF FLUIDS, 2008, 20 (10)