On probe 2-clique graphs and probe diamond-free graphs

被引:0
|
作者
Bonomo, Flavia [1 ,4 ]
de Figueiredo, Celina M. H. [2 ]
Duran, Guillermo [1 ,5 ,6 ,7 ]
Grippo, Luciano N. [8 ]
Safe, Martin D. [8 ]
Szwarcfiter, Jayme L. [2 ,3 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
[2] Univ Fed Rio de Janeiro, COPPE, BR-21941 Rio De Janeiro, Brazil
[3] Univ Fed Rio de Janeiro, NCE, BR-21941 Rio De Janeiro, Brazil
[4] Univ Buenos Aires, FCEN, Dept Comp, Buenos Aires, DF, Argentina
[5] Univ Buenos Aires, FCEN, Dept Matemat, Buenos Aires, DF, Argentina
[6] Univ Buenos Aires, FCEN, Inst Calculo, Buenos Aires, DF, Argentina
[7] Univ Chile, FCFM, Dept Ingn Ind, Santiago, Chile
[8] Univ Nacl Gen Sarmiento, Inst Ciencias, Los Polvorines, Argentina
关键词
2-clique graphs; diamond-free graphs; probe graphs; RECOGNITION;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given a class G of graphs, probe G graphs are defined as follows. A graph G is probe G if there exists a partition of its vertices into a set of probe vertices and a stable set of nonprobe vertices in such a way that non-edges of G, whose endpoints are nonprobe vertices, can be added so that the resulting graph belongs to G. We investigate probe 2-clique graphs and probe diamond-free graphs. For probe 2-clique graphs, we present a polynomial-time recognition algorithm. Probe diamond-free graphs are characterized by minimal forbidden induced subgraphs. As a by-product, it is proved that the class of probe block graphs is the intersection between the classes of chordal graphs and probe diamond-free graphs.
引用
收藏
页码:187 / 200
页数:14
相关论文
共 50 条
  • [41] Tagged Probe Interval Graphs
    Li Sheng
    Chi Wang
    Peisen Zhang
    Journal of Combinatorial Optimization, 2001, 5 : 133 - 142
  • [42] A characterization of chain probe graphs
    Martin C. Golumbic
    Frédéric Maffray
    Grégory Morel
    Annals of Operations Research, 2011, 188 : 175 - 183
  • [43] A characterization of chain probe graphs
    Golumbic, Martin C.
    Maffray, Frederic
    Morel, Gregory
    ANNALS OF OPERATIONS RESEARCH, 2011, 188 (01) : 175 - 183
  • [44] Tagged probe interval graphs
    Sheng, L
    Wang, C
    Zhang, PS
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2001, 5 (01) : 133 - 142
  • [45] A characterization of cycle-free unit probe interval graphs
    Brown, David E.
    Lundgren, J. Richard
    Sheng, Li
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (04) : 762 - 767
  • [46] CLIQUE-TO-CLIQUE TRIANGLE FREE DETOUR DISTANCE IN GRAPHS
    Asir, I. Keerthi
    Athisayanathan, S.
    ARS COMBINATORIA, 2019, 146 : 323 - 340
  • [47] CLIQUE-TRANSVERSAL SETS IN LINE GRAPHS OF CUBIC GRAPHS AND TRIANGLE-FREE GRAPHS
    Kang, Liying
    Shan, Erfang
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (05) : 1423 - 1431
  • [48] Clique covers of H-free graphs
    Nguyen, Tung
    Scott, Alex
    Seymour, Paul
    Thomasse, Stephan
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 118
  • [49] A Construction for Clique-Free Pseudorandom Graphs
    Bishnoi, Anurag
    Ihringer, Ferdinand
    Pepe, Valentina
    COMBINATORICA, 2020, 40 (03) : 307 - 314
  • [50] Characterizing interval graphs which are probe unit interval graphs
    Grippo, Luciano N.
    DISCRETE APPLIED MATHEMATICS, 2019, 262 : 83 - 95