On probe 2-clique graphs and probe diamond-free graphs

被引:0
|
作者
Bonomo, Flavia [1 ,4 ]
de Figueiredo, Celina M. H. [2 ]
Duran, Guillermo [1 ,5 ,6 ,7 ]
Grippo, Luciano N. [8 ]
Safe, Martin D. [8 ]
Szwarcfiter, Jayme L. [2 ,3 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
[2] Univ Fed Rio de Janeiro, COPPE, BR-21941 Rio De Janeiro, Brazil
[3] Univ Fed Rio de Janeiro, NCE, BR-21941 Rio De Janeiro, Brazil
[4] Univ Buenos Aires, FCEN, Dept Comp, Buenos Aires, DF, Argentina
[5] Univ Buenos Aires, FCEN, Dept Matemat, Buenos Aires, DF, Argentina
[6] Univ Buenos Aires, FCEN, Inst Calculo, Buenos Aires, DF, Argentina
[7] Univ Chile, FCFM, Dept Ingn Ind, Santiago, Chile
[8] Univ Nacl Gen Sarmiento, Inst Ciencias, Los Polvorines, Argentina
关键词
2-clique graphs; diamond-free graphs; probe graphs; RECOGNITION;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given a class G of graphs, probe G graphs are defined as follows. A graph G is probe G if there exists a partition of its vertices into a set of probe vertices and a stable set of nonprobe vertices in such a way that non-edges of G, whose endpoints are nonprobe vertices, can be added so that the resulting graph belongs to G. We investigate probe 2-clique graphs and probe diamond-free graphs. For probe 2-clique graphs, we present a polynomial-time recognition algorithm. Probe diamond-free graphs are characterized by minimal forbidden induced subgraphs. As a by-product, it is proved that the class of probe block graphs is the intersection between the classes of chordal graphs and probe diamond-free graphs.
引用
收藏
页码:187 / 200
页数:14
相关论文
共 50 条
  • [21] MINIMALLY UNBALANCED DIAMOND-FREE GRAPHS AND DYCK-PATHS
    Apollonio, Nicola
    Galluccio, Anna
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (04) : 1837 - 1863
  • [22] A new approximate cluster deletion algorithm for diamond-free graphs
    Malek, Sabrine
    Naanaa, Wady
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (02) : 385 - 411
  • [23] Maximal local edge-connectivity of diamond-free graphs
    Holtkamp, Andreas
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2011, 49 : 153 - 158
  • [24] Probe interval graphs and probe unit interval graphs on superclasses of cographs
    Bonomo, Flavia
    Grippo, Luciano N.
    Duran, Guillermo
    Safe, Martin D.
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2013, 15 (02): : 177 - 194
  • [25] On probe interval graphs
    McMorris, FR
    Wang, C
    Zhang, PS
    DISCRETE APPLIED MATHEMATICS, 1998, 88 (1-3) : 315 - 324
  • [26] Probe split graphs
    Le, Van Bang
    de Ridder, H. N.
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2007, 9 (01): : 207 - 238
  • [27] On probe interval graphs
    Discrete Appl Math, 1-3 (315-324):
  • [28] Chordal probe graphs
    Golumbic, MC
    Lipshteyn, M
    DISCRETE APPLIED MATHEMATICS, 2004, 143 (1-3) : 221 - 237
  • [29] On probe permutation graphs
    Chandler, David B.
    Chang, Maw-Shang
    Kloks, Antonius J. J.
    Liu, Jiping
    Peng, Sheng-Lung
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2006, 3959 : 494 - 504
  • [30] Probe ptolemaic graphs
    Chandler, David B.
    Chang, Maw-Shang
    Kloks, Ton
    Le, Van Bang
    Peng, Sheng-Lung
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2008, 5092 : 468 - +