On probe 2-clique graphs and probe diamond-free graphs

被引:0
|
作者
Bonomo, Flavia [1 ,4 ]
de Figueiredo, Celina M. H. [2 ]
Duran, Guillermo [1 ,5 ,6 ,7 ]
Grippo, Luciano N. [8 ]
Safe, Martin D. [8 ]
Szwarcfiter, Jayme L. [2 ,3 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
[2] Univ Fed Rio de Janeiro, COPPE, BR-21941 Rio De Janeiro, Brazil
[3] Univ Fed Rio de Janeiro, NCE, BR-21941 Rio De Janeiro, Brazil
[4] Univ Buenos Aires, FCEN, Dept Comp, Buenos Aires, DF, Argentina
[5] Univ Buenos Aires, FCEN, Dept Matemat, Buenos Aires, DF, Argentina
[6] Univ Buenos Aires, FCEN, Inst Calculo, Buenos Aires, DF, Argentina
[7] Univ Chile, FCFM, Dept Ingn Ind, Santiago, Chile
[8] Univ Nacl Gen Sarmiento, Inst Ciencias, Los Polvorines, Argentina
关键词
2-clique graphs; diamond-free graphs; probe graphs; RECOGNITION;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given a class G of graphs, probe G graphs are defined as follows. A graph G is probe G if there exists a partition of its vertices into a set of probe vertices and a stable set of nonprobe vertices in such a way that non-edges of G, whose endpoints are nonprobe vertices, can be added so that the resulting graph belongs to G. We investigate probe 2-clique graphs and probe diamond-free graphs. For probe 2-clique graphs, we present a polynomial-time recognition algorithm. Probe diamond-free graphs are characterized by minimal forbidden induced subgraphs. As a by-product, it is proved that the class of probe block graphs is the intersection between the classes of chordal graphs and probe diamond-free graphs.
引用
收藏
页码:187 / 200
页数:14
相关论文
共 50 条
  • [31] Chordal probe graphs
    Golumbic, MC
    Lipshteyn, M
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2003, 2880 : 249 - 260
  • [32] On probe permutation graphs
    Chandler, David B.
    Chang, Maw-Shang
    Kloks, Ton
    Liu, Jiping
    Peng, Sheng-Lung
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (12) : 2611 - 2619
  • [33] Probe threshold and probe trivially perfect graphs
    Bayer, Daniel
    Le, Van Bang
    de Ridder, H. N.
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (47-49) : 4812 - 4822
  • [34] Decomposing and Clique-Coloring (Diamond, Odd-Hole)-Free Graphs
    Chudnovsky, Maria
    Lo, Irene
    JOURNAL OF GRAPH THEORY, 2017, 86 (01) : 5 - 41
  • [35] On the structure of clique-free graphs
    Prömel, HJ
    Schickinger, T
    Steger, A
    RANDOM STRUCTURES & ALGORITHMS, 2001, 19 (01) : 37 - 53
  • [36] Minor clique free extremal graphs
    Cera, M
    Diánez, A
    García-Vázquez, P
    Valenzuela, JC
    ARS COMBINATORIA, 2004, 73 : 153 - 162
  • [37] Tree spanners for bipartite graphs and probe interval graphs
    Brandstädt, A
    Dragan, FF
    Le, HO
    Le, VB
    Uehara, R
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2003, 2880 : 106 - 118
  • [38] Tree spanners for bipartite graphs and probe interval graphs
    Brandstaedt, Andreas
    Dragan, Feodor F.
    Le, Hoang-Oanh
    Le, Van Bang
    Uehara, Ryuhei
    ALGORITHMICA, 2007, 47 (01) : 27 - 51
  • [39] Tree Spanners for Bipartite Graphs and Probe Interval Graphs
    Andreas Brandstadt
    Feodor F. Dragan
    Hoang-Oanh Le
    Van Bang Le
    Ryuhei Uehara
    Algorithmica, 2007, 47 : 27 - 51
  • [40] Partitioned probe comparability graphs
    Chandler, David B.
    Chang, Maw-Shang
    Kloks, Ton
    Liu, Jiping
    Peng, Sheng-Lung
    THEORETICAL COMPUTER SCIENCE, 2008, 396 (1-3) : 212 - 222