On probe 2-clique graphs and probe diamond-free graphs

被引:0
|
作者
Bonomo, Flavia [1 ,4 ]
de Figueiredo, Celina M. H. [2 ]
Duran, Guillermo [1 ,5 ,6 ,7 ]
Grippo, Luciano N. [8 ]
Safe, Martin D. [8 ]
Szwarcfiter, Jayme L. [2 ,3 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
[2] Univ Fed Rio de Janeiro, COPPE, BR-21941 Rio De Janeiro, Brazil
[3] Univ Fed Rio de Janeiro, NCE, BR-21941 Rio De Janeiro, Brazil
[4] Univ Buenos Aires, FCEN, Dept Comp, Buenos Aires, DF, Argentina
[5] Univ Buenos Aires, FCEN, Dept Matemat, Buenos Aires, DF, Argentina
[6] Univ Buenos Aires, FCEN, Inst Calculo, Buenos Aires, DF, Argentina
[7] Univ Chile, FCFM, Dept Ingn Ind, Santiago, Chile
[8] Univ Nacl Gen Sarmiento, Inst Ciencias, Los Polvorines, Argentina
关键词
2-clique graphs; diamond-free graphs; probe graphs; RECOGNITION;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given a class G of graphs, probe G graphs are defined as follows. A graph G is probe G if there exists a partition of its vertices into a set of probe vertices and a stable set of nonprobe vertices in such a way that non-edges of G, whose endpoints are nonprobe vertices, can be added so that the resulting graph belongs to G. We investigate probe 2-clique graphs and probe diamond-free graphs. For probe 2-clique graphs, we present a polynomial-time recognition algorithm. Probe diamond-free graphs are characterized by minimal forbidden induced subgraphs. As a by-product, it is proved that the class of probe block graphs is the intersection between the classes of chordal graphs and probe diamond-free graphs.
引用
收藏
页码:187 / 200
页数:14
相关论文
共 50 条
  • [1] On the connectivity of diamond-free graphs
    Dankelmann, Peter
    Hellwig, Angelika
    Volkmann, Lutz
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (16) : 2111 - 2117
  • [2] Colouring diamond-free graphs
    Dabrowski, Konrad K.
    Dross, Francois
    Paulusma, Daniel
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2017, 89 : 410 - 431
  • [3] Clique separator decomposition of hole-free and diamond-free graphs and algorithmic consequences
    Brandstaedt, Andreas
    Giakoumakis, Vassilis
    Maffray, Frederic
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (4-5) : 471 - 478
  • [4] Perfectly contractile diamond-free graphs
    Rusu, I
    JOURNAL OF GRAPH THEORY, 1999, 32 (04) : 359 - 389
  • [5] On the Competition Numbers of Diamond-Free Graphs
    Sano, Yoshio
    DISCRETE AND COMPUTATIONAL GEOMETRY AND GRAPHS, JCDCGG 2015, 2016, 9943 : 247 - 252
  • [6] Recognition algorithm for diamond-free graphs
    Talmaciu, Mihai
    Nechita, Elena
    INFORMATICA, 2007, 18 (03) : 457 - 462
  • [7] Strong cliques in diamond-free graphs
    Chiarelli, Nina
    Martinez-Barona, Berenice
    Milanic, Martin
    Monnot, Jerome
    Mursic, Peter
    THEORETICAL COMPUTER SCIENCE, 2021, 858 : 49 - 63
  • [8] Partial characterizations of clique-perfect graphs II: Diamond-free and Helly circular-arc graphs
    Bonomo, Flavia
    Chudnovsky, Maria
    Duran, Guillermo
    DISCRETE MATHEMATICS, 2009, 309 (11) : 3485 - 3499
  • [9] Strong Cliques in Diamond-Free Graphs
    Chiarelli, Nina
    Martinez-Barona, Berenice
    Milanic, Martin
    Monnot, Jerome
    Mursic, Peter
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, WG 2020, 2020, 12301 : 261 - 273
  • [10] Perfectly contractile diamond-free graphs
    Universitá d'Orláans, L.I.F.O., B.P. 6759, 45067 Orláans Cedex 2, France
    J. Graph Theory, 4 (359-389):