Nonconforming generalized multiscale finite element methods

被引:2
|
作者
Lee, Chak Shing [1 ]
Sheen, Dongwoo [2 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Seoul Natl Univ, Dept Math, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Generalized multiscale finite element method; Nonconforming method; Highly heterogeneous media; Oversampling; ELLIPTIC PROBLEMS; CROUZEIX-RAVIART; HOMOGENIZATION; MSFEM;
D O I
10.1016/j.cam.2016.07.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A framework is introduced for nonconforming multiscale approach based on GMsFEM (Generalized Multiscale Finite Element Method). Snapshot spaces are constructed for each macro-scale block. The snapshot spaces can be based on either conforming or nonconforming elements. With suitable dimension reduction, offline spaces are constructed. Moment function spaces are then introduced to impose continuity among the local offline spaces, which results in nonconforming GMsFE spaces. Oversampling and randomized boundary condition strategies are considered. Steps for the nonconforming GMsFEM are given explicitly. Error estimates are derived. Numerical results are presented to support the efficiency of the proposed approach. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:215 / 229
页数:15
相关论文
共 50 条
  • [31] Mixed and nonconforming finite element methods on a system of polygons
    Vohralik, M.
    Maryska, J.
    Severyn, O.
    APPLIED NUMERICAL MATHEMATICS, 2007, 57 (02) : 176 - 193
  • [32] Nonconforming finite element methods without numerical locking
    Daniela Capatina-Papaghiuc
    Jean-Marie Thomas
    Numerische Mathematik, 1998, 81 : 163 - 186
  • [33] A posteriori error estimators for nonconforming finite element methods
    Dari, E
    Duran, R
    Padra, C
    Vampa, V
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1996, 30 (04): : 385 - 400
  • [34] ADAPTIVE LEAST-SQUARES MIXED GENERALIZED MULTISCALE FINITE ELEMENT METHODS
    Chen, Fuchen
    Chung, Eric
    Jiang, Lijian
    MULTISCALE MODELING & SIMULATION, 2018, 16 (02): : 1034 - 1058
  • [35] Nonconforming finite element method for a generalized nonlinear Schrodinger equation
    Zhang, Houchao
    Shi, Dongyang
    Li, Qingfu
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 377
  • [36] Meshfree Generalized Multiscale Finite Element Method
    Nikiforov, Djulustan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 474
  • [37] Generalized multiscale finite element methods for space-time heterogeneous parabolic equations
    Chung, Eric T.
    Efendiev, Yalchin
    Leung, Wing Tat
    Ye, Shuai
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (02) : 419 - 437
  • [38] Relationship between multiscale enrichment and stabilized finite element methods for the generalized Stokes problem
    Barrenechea, GR
    Valentin, F
    COMPTES RENDUS MATHEMATIQUE, 2005, 341 (10) : 635 - 640
  • [39] OPTIMAL LOCAL APPROXIMATION SPACES FOR GENERALIZED FINITE ELEMENT METHODS WITH APPLICATION TO MULTISCALE PROBLEMS
    Babuska, Ivo
    Lipton, Robert
    MULTISCALE MODELING & SIMULATION, 2011, 9 (01): : 373 - 406
  • [40] Nonconforming finite element methods for the simulation of waves in viscoelastic solids
    Ha, T
    Santos, JE
    Sheen, D
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (49-50) : 5647 - 5670