Nonconforming generalized multiscale finite element methods

被引:2
|
作者
Lee, Chak Shing [1 ]
Sheen, Dongwoo [2 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Seoul Natl Univ, Dept Math, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Generalized multiscale finite element method; Nonconforming method; Highly heterogeneous media; Oversampling; ELLIPTIC PROBLEMS; CROUZEIX-RAVIART; HOMOGENIZATION; MSFEM;
D O I
10.1016/j.cam.2016.07.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A framework is introduced for nonconforming multiscale approach based on GMsFEM (Generalized Multiscale Finite Element Method). Snapshot spaces are constructed for each macro-scale block. The snapshot spaces can be based on either conforming or nonconforming elements. With suitable dimension reduction, offline spaces are constructed. Moment function spaces are then introduced to impose continuity among the local offline spaces, which results in nonconforming GMsFE spaces. Oversampling and randomized boundary condition strategies are considered. Steps for the nonconforming GMsFEM are given explicitly. Error estimates are derived. Numerical results are presented to support the efficiency of the proposed approach. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:215 / 229
页数:15
相关论文
共 50 条
  • [21] Generalized Multiscale Finite Element Methods. Nonlinear Elliptic Equations
    Efendiev, Yalchin
    Galvis, Juan
    Li, Guanglian
    Presho, Michael
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2014, 15 (03) : 733 - 755
  • [22] GENERALIZED MULTISCALE FINITE ELEMENT METHODS FOR WAVE PROPAGATION IN HETEROGENEOUS MEDIA
    Chung, Eric T.
    Efendiev, Yalchin
    Leung, Wing Tat
    MULTISCALE MODELING & SIMULATION, 2014, 12 (04): : 1691 - 1721
  • [23] Partially explicit generalized multiscale finite element methods for poroelasticity problem
    Su, Xin
    Leung, Wing Tat
    Li, Wenyuan
    Pun, Sai-Mang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 448
  • [24] A NONCONFORMING GENERALIZED FINITE ELEMENT METHOD FOR TRANSMISSION PROBLEMS
    Mazzucato, Anna L.
    Nistor, Victor
    Qu, Qingqin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 555 - 576
  • [25] Residual-driven online generalized multiscale finite element methods
    Chung, Eric T.
    Efendiev, Yalchin
    Leung, Wing Tat
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 302 : 176 - 190
  • [26] THE MULTISCALE FINITE ELEMENT METHOD WITH NONCONFORMING ELEMENTS FOR ELLIPTIC HOMOGENIZATION PROBLEMS
    Chen, Zhangxin
    Cui, Ming
    Savchuk, Tatyana Y.
    Yu, Xijun
    MULTISCALE MODELING & SIMULATION, 2008, 7 (02): : 517 - 538
  • [27] Nonconforming Finite Element Methods for Wave Propagation in Metamaterials
    Yao, Changhui
    Wang, Lixiu
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2017, 10 (01) : 145 - 166
  • [28] A posteriori error estimates for nonconforming finite element methods
    Carstensen, C
    Bartels, S
    Jansche, S
    NUMERISCHE MATHEMATIK, 2002, 92 (02) : 233 - 256
  • [29] A posteriori error estimates for nonconforming finite element methods
    Carsten Carstensen
    Sören Bartels
    Stefan Jansche
    Numerische Mathematik, 2002, 92 : 233 - 256
  • [30] Nonconforming finite element methods without numerical locking
    Capatina-Papaghiuc, D
    Thomas, JM
    NUMERISCHE MATHEMATIK, 1998, 81 (02) : 163 - 186