Meshfree Generalized Multiscale Finite Element Method

被引:9
|
作者
Nikiforov, Djulustan [1 ]
机构
[1] North Eastern Fed Univ, Yakutsk, Russia
关键词
Generalized multiscale finite element; method; Meshfree method; Fractured domain; DISCONTINUOUS GALERKIN METHOD; UNSTRUCTURED GRIDS; ELLIPTIC PROBLEMS; VOLUME METHOD; FLOW; EQUATION;
D O I
10.1016/j.jcp.2022.111798
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose a new multiscale approach with a meshfree coarse scale. A coarse scale is constructed on the basis of an already existing computational grid on a fine scale, depending on the heterogeneous parameters of the problem. This approach is based on the Generalized Multiscale Finite Element Method (GMsFEM), where the heterogeneous parameters of the problem are taken into account on a coarse scale using multiscale basis functions. These multiscale basis functions are constructed at an offline stage using local spectral problems. To represent the fractures on a fine grid, the Discrete Fracture Model (DFM) is used. The results of a numerical solution for two-dimensional and three-dimensional problems are presented.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Online Meshfree Generalized Multiscale Finite Element Method for Flows in Fractured Media
    D. Y. Nikiforov
    S. P. Stepanov
    N. P. Lazarev
    Lobachevskii Journal of Mathematics, 2024, 45 (11) : 5391 - 5401
  • [2] A mixed multiscale spectral generalized finite element method
    Alber, Christian
    Ma, Chupeng
    Scheichl, Robert
    NUMERISCHE MATHEMATIK, 2025, 157 (01) : 1 - 40
  • [3] A generalized multiscale finite element method for the Brinkman equation
    Galvis, Juan
    Li, Guanglian
    Shi, Ke
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 280 : 294 - 309
  • [4] Generalized multiscale finite element method for elasticity equations
    Chung E.T.
    Efendiev Y.
    Fu S.
    GEM - International Journal on Geomathematics, 2014, 5 (2) : 225 - 254
  • [5] A weak Galerkin generalized multiscale finite element method
    Mu, Lin
    Wang, Junping
    Ye, Xiu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 305 : 68 - 81
  • [6] A Generalized Multiscale Finite Element Method for Thermoelasticity Problems
    Vasilyeva, Maria
    Stalnov, Denis
    NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016), 2017, 10187 : 713 - 720
  • [7] REITERATED MULTISCALE MODEL REDUCTION USING THE GENERALIZED MULTISCALE FINITE ELEMENT METHOD
    Chung, Eric T.
    Efendiev, Yalchin
    Leung, Wing Tat
    Vasilyeva, Maria
    International Journal for Multiscale Computational Engineering, 2016, 14 (06) : 535 - 554
  • [8] Constraint Energy Minimizing Generalized Multiscale Finite Element Method
    Chung, Eric T.
    Efendiev, Yalchin
    Leung, Wing Tat
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 339 : 298 - 319
  • [9] Multiscale Simulations for Coupled Flow and Transport Using the Generalized Multiscale Finite Element Method
    Chung, Eric T.
    Efendiev, Yalchin
    Leung, Wing Tat
    Ren, Jun
    COMPUTATION, 2015, 3 (04): : 670 - 686
  • [10] Generalized Multiscale Finite Element Method for the poroelasticity problem in multicontinuum media
    Tyrylgin, Aleksei
    Vasilyeva, Maria
    Spiridonov, Denis
    Chung, Eric T.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 374