Meshfree Generalized Multiscale Finite Element Method

被引:9
|
作者
Nikiforov, Djulustan [1 ]
机构
[1] North Eastern Fed Univ, Yakutsk, Russia
关键词
Generalized multiscale finite element; method; Meshfree method; Fractured domain; DISCONTINUOUS GALERKIN METHOD; UNSTRUCTURED GRIDS; ELLIPTIC PROBLEMS; VOLUME METHOD; FLOW; EQUATION;
D O I
10.1016/j.jcp.2022.111798
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose a new multiscale approach with a meshfree coarse scale. A coarse scale is constructed on the basis of an already existing computational grid on a fine scale, depending on the heterogeneous parameters of the problem. This approach is based on the Generalized Multiscale Finite Element Method (GMsFEM), where the heterogeneous parameters of the problem are taken into account on a coarse scale using multiscale basis functions. These multiscale basis functions are constructed at an offline stage using local spectral problems. To represent the fractures on a fine grid, the Discrete Fracture Model (DFM) is used. The results of a numerical solution for two-dimensional and three-dimensional problems are presented.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] A CONSTRAINT ENERGY MINIMIZING GENERALIZED MULTISCALE FINITE ELEMENT METHOD FOR PARABOLIC EQUATIONS
    Li, Mengnan
    Chung, Eric
    Jiang, Lijian
    MULTISCALE MODELING & SIMULATION, 2019, 17 (03): : 996 - 1018
  • [42] An online generalized multiscale approximation of the multipoint flux mixed finite element method
    He, Zhengkang
    Chen, Jie
    Chen, Zhangxin
    Zhang, Tong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 437
  • [43] A constraint energy minimizing generalized multiscale finite element method for parabolic equations
    Li, Mengnan
    Chung, Eric
    Jiang, Lijian
    Multiscale Modeling and Simulation, 2019, 17 (03): : 996 - 1018
  • [44] Adaptive generalized multiscale approximation of a mixed finite element method with velocity elimination
    He, Zhengkang
    Chung, Eric T.
    Chen, Jie
    Chen, Zhangxin
    COMPUTATIONAL GEOSCIENCES, 2021, 25 (05) : 1681 - 1708
  • [45] Adaptive generalized multiscale approximation of a mixed finite element method with velocity elimination
    Zhengkang He
    Eric T. Chung
    Jie Chen
    Zhangxin Chen
    Computational Geosciences, 2021, 25 : 1681 - 1708
  • [46] Constraint energy minimizing generalized multiscale finite element method in the mixed formulation
    Eric Chung
    Yalchin Efendiev
    Wing Tat Leung
    Computational Geosciences, 2018, 22 : 677 - 693
  • [47] Mixed Generalized Multiscale Finite Element Method for Darcy-Forchheimer Model
    Spiridonov, Denis
    Huang, Jian
    Vasilyeva, Maria
    Huang, Yunqing
    Chung, Eric T.
    MATHEMATICS, 2019, 7 (12)
  • [48] Generalized Multiscale Finite Element Method for Elastic Wave Propagation in the Frequency Domain
    Gavrilieva, Uygulana
    Vasilyeva, Maria
    Chung, Eric T.
    COMPUTATION, 2020, 8 (03)
  • [49] OVERSAMPLING FOR THE MULTISCALE FINITE ELEMENT METHOD
    Henning, Patrick
    Peterseim, Daniel
    MULTISCALE MODELING & SIMULATION, 2013, 11 (04): : 1149 - 1175
  • [50] A multiscale finite-element method
    Rank, E
    Krause, R
    COMPUTERS & STRUCTURES, 1997, 64 (1-4) : 139 - 144